Claim Missing Document
Check
Articles

Found 4 Documents
Search

A Design of Economically Feasible Hybrid Energy System with Renewable Energy Ratio Priority Sibarani, Michael Bonardo Siswono; Jufri, Fauzan Hanif; Samual, Muhammad Gillfran; Widayat, Aditya Anindito; Sudiarto, Budi
International Journal of Electrical, Computer, and Biomedical Engineering Vol. 2 No. 2 (2024)
Publisher : Universitas Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62146/ijecbe.v2i2.60

Abstract

The reduction of fossil fuels which produce CO2 emission that damage the environment, can be done by implementing renewable energy-based power generations, such as solar and wind. This research designs a hybrid energy system by optimizing the use of existing diesel generators through the integration of renewable energy sources, such as solar photovoltaic and micro wind turbine, and is equipped with an energy storage system. This research uses HOMER Pro software to determine the optimal capacity of hybrid system components, and to calculate the cost of energy (CoE). Furthermore, the hybrid system configuration is analyzed by applying several objectives. The objectives of the hybrid system design are to prioritize a maximum renewable energy penetration ratio within permitted annual capacity shortage and with the CoE lower than the existing CoE. The research results show that the proposed hybrid energy system can provide a renewable energy penetration ratio of 57.1% with CoE of IDR 3,510/kWh.
Blackout Recovery Scenario in a Combined-Cycle Power Plant via Line Charging and Internal Cross-Supply: A Techno-Economic Comparative Analysis Warih, Gamal Fiqih Handono; Jufri, Fauzan Hanif; Samual, Muhammad Gillfran; Hudaya, Chairul
International Journal of Electrical, Computer, and Biomedical Engineering Vol. 2 No. 2 (2024)
Publisher : Universitas Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62146/ijecbe.v2i2.61

Abstract

The readiness of fast response power plants, such as Combined-Cycle Power Plant (CCCP), following a blackout in the power system shall be maintained to preserve the availability of the supply. Hence, blackout recovery scenario is usually prepared and considered as one of the measures to achieve the system readiness after blackout. This study presents a techno-economic comparative analysis between two blackout recovery methods, namely via line charging and internal cross-supply, in CCCP Priok, Indonesia. It analyzes the historical data of the relationship of the active power contribution to the frequency, and then obtains the appropriate settings for the power plant parameters. From the technical perspective, the gain value or participation factor of this plant is 49 MW/Hz with 6% droop setting and 0.029 Hz of deadband frequency. It is found that a load set point lower than 2.49 MW can lead to grid synchronization failure since there are self-consumption loads on each gas turbine. Moreover, to prevent the risk of reverse power and to achieve a successful internal cross-supply scenario, the minimum load setting shall be adjusted to 3 MW. Meanwhile, from an economic perspective, the results show that a successful internal cross-supply method may save up to IDR 2.7 billion compared with line charging method.
Optimal Battery Energy Storage System Placement Strategy in Central Java Electrical System for Voltage and Losses Improvement Fikry, Hafizh Al; Samual, Muhammad Gillfran; Sudiarto, Budi
International Journal of Electrical, Computer, and Biomedical Engineering Vol. 2 No. 3 (2024)
Publisher : Universitas Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62146/ijecbe.v2i3.75

Abstract

Over the past few decades, advances in energy storage technology, particularly in the form of Battery Energy Storage Systems (BESS), have provided innovative solutions to address various challenges in the power grid such as voltage fluctuations and high levels of losses, which negatively impact the efficiency and quality of electricity provision. BESS has advantages over other energy storage technologies such as having lower costs, faster response times to power equipment or devices, and increased efficiency and flexibility. The purpose of this research is to determine the optimal capacity and location of the placement of BESS to get an improvement in the voltage profile and losses in the Central Java Province power system. In this study, BESS is incorporated into the Jelok substation based on the calculation method under day and night conditions, which will be sought for the most optimal placement. After getting the most optimal placement, the optimal BESS capacity based on the calculation method, 15 MWh, and 25 MWh will be compared. The effect of optimum BESS placement and sizing of up to 0.0035 pu, and reduce losses up to 1.87 MW.
Techno-Economic Optimization Study of Renewable Energy Planning in Buru Island Electricity System Z Day, Faizatul Hasanah; Samual, Muhammad Gillfran; Garniwa, Iwa; Sudiarto, Budi
International Journal of Electrical, Computer, and Biomedical Engineering Vol. 2 No. 4 (2024)
Publisher : Universitas Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62146/ijecbe.v2i4.73

Abstract

One of the strategies to achieve Indonesia's NDC target in 2030 is through the development of renewable energy power plants, and the transition from fossil fuels to renewable energy. The use of diesel power plants, especially with the case on Buru Island as the only electricity supply, contributes to the production of emissions, and increases the Cost of Energy (CoE) of the utility system. On the other hand, Buru Island is rich in renewable energy potential, such as geothermal, hydropower, bioenergy, and solar energy. This study aims to design an optimal power generation system on Buru Island by considering the renewable energy mix, financial feasibility, reduction in the CoE of local electricity system, reduction in CO2 emissions, and the potential load growth of the local industry, i.e. fisheries industry sector. This study utilizes HOMER software to obtain a power generation scenario that can supply the load with the most optimal renewable energy penetration, the lowest Levelized CoE (LCOE), and the lowest CO2 emissions. Seven electrical systems on Buru Island were implemented to form 4 systems, namely an integrated system of 4 previously distributed systems, and 3 other distributed systems. The result of this research gives out the most optimum configuration of hybrid or complete renewable energy-based power plant configuration for each system. The configurations can reduce the CoE up to 20.17 cUSD/kWh, and up to zero CO2 emission.