Dhahir, Saadiyah Ahmed
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Cloud Point Extraction Method for Spectrophotometric Determination of 3-Aminophenol in Environmental Samples Imran, Alaa Mousa; Dhahir, Saadiyah Ahmed; Muklive, Ahmed Jassim
Indonesian Journal of Chemistry Vol 24, No 4 (2024)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.89922

Abstract

This work describes the development of new spectrophotometric techniques for 3-aminophenol assessment. The first technique involves using benzidine in an alkaline solution to convert 3-aminophenol into a colored complex. The produced complex has a red color with an absorbance of 462 nm. Between the concentration range 5–14 μg mL−1, Beer's law is obeyed with a correlation coefficient (R2) of 0.99781, a limit of detection (LOD) of 0.0423 μg mL−1, and a limit of quantification (LOQ) of 0.1411 μg mL−1. The recovery was between 87.2–95.43%, the relative standard deviation (%RSD) was 2.40–3.31% and the molar absorptivity was 3.545 × 103 L mol−1 cm−1. Secondly, cloud point extraction (CPE) was used to determine a trace amount of the colored product in the first method, followed by measuring with a UV-vis spectrophotometer. The linearity of the calibration curve was above the range of 5–14 μg mL−1, and the R2 was 0.9988. The LOD and LOQ were found to be 0.0318 and 0.1059 μg mL−1, respectively. The recovery was between 99.49–99.82%, the %RSD was 0.67–2.00% and the molar absorptivity was 4.724 × 103 L mol−1 cm−1. This method was successfully employed for 3-aminophenol detection in several wastewater samples from Rustamiya, under the Al Doura and Diyala bridge.
Synthesis of Titanium Dioxide Nanoparticles for Removal of Pb2+, Cd2+ and Cr3+ from Wastewater Mansoor, Hadeel Salah; Salman, Taghried Ali; Dhahir, Saadiyah Ahmed
Indonesian Journal of Chemistry Vol 25, No 5 (2025)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.102753

Abstract

Water pollution is widely regarded as one of the most pressing global challenges, exacerbated by human progress in industrial, agricultural, and technological sectors. Wastewater often contains non-biodegradable heavy metals that accumulate in living organisms. This accumulation poses significant risks to both environmental ecosystems and human health. The structures and surface morphology were characterized by FTIR, UV-vis measurements, XRD, SEM, and AFM. TiO2 nanoparticles could remove heavy metal ions (Pb2+, Cd2+, and Cr3+) from two samples (laboratory samples and real samples from Babylon battery factory in Al-Waziriya, Baghdad/Iraq) and measured by AAS. The results indicated that the removal percentages of heavy metal ions by TiO2 nanoparticles from real sample ions were 91.32, 64.28 and 58.33% for Pb2+, Cd2+, and Cr3+, respectively. The optimum conditions for removal were 0.1 g of TiO2 nanoparticles, 10 ppm concentration of the pollutant ions, 75 min stirring time, a 100-rpm stirring rate, and a pH level of 7. The kinetic data were related to the pseudo-second-order (R2 = 0.9455), and the isotherm models were related to the Langmuir equation (R2 = 0.9769).