Agung Nurcahyo, Wahyu
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

DEEP PRE-TRAINED MULTI MODEL CONVOLUTION NEURAL NETWORK UNTUK DIAGNOSA COVID 19 PADA CITRA RONTGEN DADA Faishol Amrulloh, Muhammad; Moch. Lutfi; Agung Nurcahyo, Wahyu
JATI (Jurnal Mahasiswa Teknik Informatika) Vol. 6 No. 2 (2022): JATI Vol. 6 No. 2
Publisher : Institut Teknologi Nasional Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36040/jati.v6i2.5564

Abstract

Covid-19 merupakan penyakit yang sedang mewabah di berbagai belahan dunia termasuk Indonesia. Penyakit ini menginfeksi saluran pernapasan yang disebabkan oleh jenis virus corona baru. Untuk mengetahui adanya virus covid-19 di dalam tubuh dapat dilakukan pemeriksaan medis seperti cek darah, pemeriksaan radiologi rontgent (x-ray) dan swab. Penelitian ini melakukan identifikasi penyakit covid-19 berdasarkan citra rontgen dengan metode yang diusulkan model convolution neural network yang mampu menghasilkan performa paling baik dalam mendeteksi penyakit. Pengujian dilakukan dengan menggunakan empat pre-trained ensemble model yang telah disediakan oleh Keras yaitu VGGNet, GoogleNet, DenseNet, dan NASNet tingkat akurasi training yang dihasilkan adalah 97% dan akurasi validasi yang dihasilkan adalah 85% akan tetapi metode yang diusulkan pada penelitian ini waktu komputasi yang dihasilkan sangat baik yaitu 0 detik dari hasil tersebut dapat simpulkan metode penggabungan (ensemble) ini sangat baik jika diimplementasikan terhadap data penelitian yang digunakan.