Claim Missing Document
Check
Articles

Found 1 Documents
Search

Numbers of Weights of Convex Quadrilaterals in Weighted Point Sets Sakai, Toshinori; Matsumoto, Satoshi
Indonesian Journal of Combinatorics Vol 8, No 1 (2024)
Publisher : Indonesian Combinatorial Society (InaCombS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.19184/ijc.2024.8.1.1

Abstract

Let ℘n denote the family of sets of points in general position in the plane each of which is assigned a different number, called a weight, in {1,2,...,n}. For P∈℘n and a polygon Q with vertices in P, we define the weight of Q as the sum of the weights of its vertices and denote by Wk(P) the set of weights of convex k-gons with vertices in P∈℘n. Let fk(n) = minP∈℘n |Wk(P)|. It is known that n-5 ≤ f4(n) ≤ 2n-9 for n≥7. In this paper, we show that f4(n)≥ 4n/3-7.