Istiqomah, Annisa Ayu
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Facial Expression Recognition using Convolutional Neural Networks with Transfer Learning Resnet-50 Istiqomah, Annisa Ayu; Sari, Christy Atika; Susanto, Ajib; Rachmawanto, Eko Hari
Journal of Applied Informatics and Computing Vol. 8 No. 2 (2024): December 2024
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v8i2.8329

Abstract

Facial expression recognition is important for many applications, including sentiment analysis, human-computer interaction, and interactive systems in areas such as security, healthcare, and entertainment. However, this task is fraught with challenges, mainly due to large differences in lighting conditions, viewing angles, and differences in individual eye structures. These factors can drastically affect the appearance of facial expressions, making it difficult for traditional recognition systems to consistently and accurately identify emotions. Variations in lighting can alter the visibility of facial features, while different angles can obscure critical details necessary for accurate expression detection. This study addresses these issues by employing transfer learning with ResNet-50 and effective pre-processing techniques. The dataset consists of grayscale images with a 48 x 48 pixels resolution. It includes a total of 680 samples categorized into seven classes: anger, contempt, disgust, fear, happy, sadness, and surprise. The dataset was divided so that 80% was allocated for training and 20% for testing to ensure robust model evaluation. The results demonstrate that the model utilizing transfer learning achieved an exceptional performance level, with accuracy at 99.49%, precision at 99.49%, recall at 99.71%, and an F1-score of 99.60%, significantly outperforming the model without transfer learning. Future research will focus on implementing real-time facial recognition systems and exploring other advanced transfer learning models to further enhance accuracy and operational efficiency.