Claim Missing Document
Check
Articles

Found 1 Documents
Search

EEG-based Classifications of Alzheimer’s Disease by Using Machine Learning Techniques C. R, Nagarathna
International Journal of Artificial Intelligence Vol 11 No 1: June 2024
Publisher : Lamintang Education and Training Centre, in collaboration with the International Association of Educators, Scientists, Technologists, and Engineers (IA-ESTE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36079/lamintang.ijai-01101.601

Abstract

The study has shown how classifiers behave when identifying and categorizing Alzheimer's disease stages. The main characteristics of various frequency bands were fed into the classifier as input. The accuracy of recognition is evaluated using machine learning classifiers. The effort aims to create a novel model that combines "preprocessing, feature extraction, and classification" to identify different stages of disease. The study starts with bands filtering, moves on to feature extraction, which derives several bands from the EEG signals, and then employs KNN, SVM, and MLP algorithms to measure classification performance. "AD detection and classification using machine learning classifiers KNN, SVM, and MLP" is the main focus of this research. Five wavelet band characteristics are used by the built classifiers to categorize different illness phases. These characteristics are computed using DWT, PCA, and ICA, which aid in obtaining wavelet-related knowledge for learning. The proposed machine learning model achieves a classification accuracy of 95% overall.