Rao, Pulluri Srinivas
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Plant disease classification using novel integration of deep learning CNN and graph convolutional networks Maheswara Rao, Saka Uma; Sreekala, Keshetti; Rao, Pulluri Srinivas; Shirisha, Nalla; Srinivas, Gunnam; Sreedevi, Erry
Indonesian Journal of Electrical Engineering and Computer Science Vol 36, No 3: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v36.i3.pp1721-1730

Abstract

Plant diseases present substantial challenges to global agriculture, significantly affecting crop yields and jeopardizing food security. Accurate and timely detection of these diseases is paramount for mitigating their adverse effects. This paper proposes a novel approach for plant disease classification by integrating convolutional neural networks (CNNs) and graph convolutional networks (GCNs). The model aims to enhance classification accuracy by leveraging both visual features extracted by CNNs and relational information captured by GCNs. Using a Kaggle dataset containing images of diseased and healthy plant leaves from 31 classes, including apple, corn, grape, peach, pepper bell, potato, strawberry, and tomato. Standalone CNN models were trained on image data from each plant type, while standalone GCN models utilized graph-structured data representing plant relationships within each subset. The proposed integrated CNN-GCN model capitalizes on the complementary strengths of CNNs and GCNs to achieve improved classification performance. Through rigorous experimentation and comparative analysis, the effectiveness of the integrated CNN-GCN approach was evaluated alongside standalone CNN and GCN models across all plant types. Results demonstrated the superiority of the integrated model, highlighting its potential for enhancing plant disease classification accuracy.