Ahmed, Basma
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

No-reference image quality assessment based on visual explanation images and deep transfer learning Ahmed, Basma; Omer, Osama A.; Singh, Vivek Kumar; Rashed, Amal; Abdel-Nasser, Mohamed
Indonesian Journal of Electrical Engineering and Computer Science Vol 36, No 3: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v36.i3.pp1521-1531

Abstract

Quantifying image quality in the absence of a reference image continues to be a challenge despite the introduction of numerous no-reference image quality assessments (NR-IQA) in recent years. Unlike most existing NRIQA methods, this paper proposes an efficient NR-IQA method based on deep visual interpretations. Specifically, the main components of the proposed method are: i) generating a pseudo-reference image (PRI) for the input distorted images, ii) employing a pretrained convolutional network to extract feature maps from the distorted image and the corresponding PRI, iii) producing visual explanation images (VEIs) by using the feature maps of the distorted image and the corresponding PRI, iv) measuring the similarity between the two VEIs using an image similarity metric, and v) employing a non-linear mapping function for quality score alignment. In our experiments, we evaluated the efficacy of the proposed method across various forms of distortion using four benchmark datasets (LIVE, SIQAD, CSIQ, and TID2013). The proposed approach demonstrates parity with the latest methods, as evidenced by comparisons with both hand-crafted NR-IQA and deep learning-based approaches.