Daud, Kauthar Mohd
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Feature selection technique on convolutional neural network – multilabel classification task Hayami, Regiolina; Yusoff, Nooraini; Daud, Kauthar Mohd; Mukhtar, Harun; Al Amien, Januar
Indonesian Journal of Electrical Engineering and Computer Science Vol 35, No 3: September 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v35.i3.pp2001-2009

Abstract

Automated text-based recommendation, an artificial intelligence development, finds application in document analysis like job resumes. The classification of job resumes poses challenges due to the ambiguity in categorizing multiple potential jobs in a single application file, termed multi-label classification, deep learning, particularly convolutional neural networks (CNN), offers flexibility in enhancing feature representations. Despite its robust learning capabilities, the black-box design of deep learning lacks interpretability and demands a substantial number of parameters, requiring significant computational resources. The primary challenge in multilabel learning is the ambiguity of labels not fully explained by traditional equivalence relations. To address this, the research employs feature selection techniques, specifically the Chi-square method. The goal is to reduce features in deep learning models while considering label relevance in multi-label text classification, easing computational workload while preserving model performance. Experimental tests, both with and without the Chi-square feature selection technique on the dataset, underscore its substantial impact on the classification model's ability. The conclusion emphasizes the influence of the Chi-square feature selection technique on performance and computational time. In summary, the research underscores the importance of balancing computational efficiency and model interpretability, especially in complex multi-label classification tasks like job applications.
Performance evaluation of multiclass classification models for ToN-IoT network device datasets Soni, Soni; Remli, Muhammad Akmal; Daud, Kauthar Mohd; Al Amien, Januar
Indonesian Journal of Electrical Engineering and Computer Science Vol 35, No 1: July 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v35.i1.pp485-493

Abstract

Internet of things (IoT) technology has empowered tangible objects to establish internet connections, facilitating data exchange with computational capabilities. With significant potential across sectors like healthcare, environmental monitoring, and industrial control, IoT represents a promising technological advancement. This study explores datasets from ToN-IoT’s IoT devices, focusing on multi-class classification, including normal and attack classes, with an additional aim of identifying potential attack sub-classes. Datasets comprise various IoT devices, such as refrigerators, garage doors, global positioning systems (GPS) sensors, motion lights, modbus devices, thermostats, and weather sensors. Comparative analysis is conducted between two prominent multiclass classification models, extreme gradient boosting (XGBoost) and light gradient boosting machine (LightGBM), utilizing accuracy and computational time metrics as evaluation criteria. Research findings highlight that the LightGBM model achieves superior accuracy at 78%, surpassing XGBoost 74.31%. However, XGBoost demonstrates an advantage with a shorter computational time of 1.23 seconds, compared to LightGBM 6.79 seconds. This study not only provides insights into multiclass classification model selection but also underscores the crucial consideration of the trade-off between accuracy and computational efficiency in decision-making. Research contributes to advancing our understanding of IoT security through effective classification methodologies. The findings offer valuable information for researchers and practitioners, emphasizing the nuanced decisions needed when selecting models based on specific priorities like accuracy and computational efficiency.