Sankepally, Swathi
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Optimal size and allocation of wind distributed generation in distribution network using particle swarm optimization Sankepally, Swathi; Bali, Sravana Kumar
Indonesian Journal of Electrical Engineering and Computer Science Vol 36, No 2: November 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v36.i2.pp724-732

Abstract

The aim of this research is to evaluate the performance of the distribution network by connecting wind distributed generation (DG) and determining the optimal location and size using the particle swarm optimization (PSO) technique, once the wind DG is connected at the optimal location, the output of wind turbines is not constant but varies with changes in wind speed. Wind turbines are designed to generate the energy from the wind. As the output of the wind turbines changes, it influences the power flow and voltage levels in the distribution network. The injection of power from the wind turbines can cause variations in voltages within the distribution network. Additionally, the changing power flow may contribute to power losses in the distribution system. In this paper, the voltages and active power losses are evaluated with the change in wind speed for the IEEE 15 Bus system by conducting load flow analysis in MATLAB. The results reveal optimized solutions that contribute to reduced power losses, increased renewable energy generation, and improved voltage profiles. This research underscores the potential of PSO-based optimization in conforming more efficient and sustainable distribution networks.
Performance evaluation of distribution network with change of load by connecting wind DG Sankepally, Swathi; Kumar Bali, Sravana
Indonesian Journal of Electrical Engineering and Computer Science Vol 39, No 3: September 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v39.i3.pp1459-1466

Abstract

The aimĀ of this research is to determine the optimal location and size of a minimum number of distributed generators (DGs) needed to maintain the stable operation of an IEEE 85-bus distributed network. The main objective is to ensure the stability of the distribution network by optimizing the placement and capacity of DGs. This is accomplished through the utilization of particle swarm optimization (PSO). The stability of the distribution network is checked by evaluating the voltages and power losses using load flow. The stability of the distribution network is assessed using boundary criteria that are not altered by more than 5% of the nominal voltage value. The distribution network voltage stability is assessed using various case studies, one of that involves a change in load driven by connecting WDG and the other by a change in power supply from wind DGs due to varying wind speed. The PSO is implemented in IEEE-85 bus distribution network using MATLAB software.