Vallabhaneni, Rohith
Unknown Affiliation

Published : 9 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 9 Documents
Search

Secured web application based on CapsuleNet and OWASP in the cloud Vallabhaneni, Rohith; Somanathan Pillai, Sanjaikanth E. Vadakkethil; Vaddadi, Srinivas A.; Addula, Santosh Reddy; Ananthan, Bhuvanesh
Indonesian Journal of Electrical Engineering and Computer Science Vol 35, No 3: September 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v35.i3.pp1924-1932

Abstract

The tremendous use of sensitive and consequential information in the advanced web application confronts the security issues. To defend the web application while it processing the information must requires the security system. The detection of attacks of web is made by the payload or HTTP request-based detection in association with the scholars. Some of the scholars provide secured attack model detection; however, it fails to achieve the optimal detection accuracy. In concern with these issues, we propose an innovative technique for the attack detection the web applications. The proposed attack detection is based on the novel deep CapsuleNet based technique and the process begins with pre-processing steps known as decoding, generalization, tokenization/standardization and vectorization. After the pre-processing steps the information are passed to deep CapsuleNet for extracting the features for attaining the temporal dependencies from the sequential data. The subtle patterns in the information also detected using the proposed work. Simulation is effectuated to demonstrate the effectiveness of the proposed work and compared with other existing works. Our proposed system provides better accuracy in detecting the attacks than the state-of-art works.
Optimized deep neural network based vulnerability detection enabled secured testing for cloud SaaS Vallabhaneni, Rohith; Somanathan Pillai, Sanjaikanth E. Vadakkethil; Vaddadi, Srinivas A.; Addula, Santosh Reddy; Ananthan, Bhuvanesh
Indonesian Journal of Electrical Engineering and Computer Science Vol 36, No 3: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v36.i3.pp1950-1959

Abstract

Based on the information technology service model, an on-demand services towards user becomes cost effective, which is provided with cloud computing. The network attack is detected with research community that pays huge interest. The novel proposed framework is intended with the combination of mitigation and detection of attack. While enormous traffic is obtainable, extract the relevant fields decide with Software-as-a-service (SaaS) provider. According to the network vulnerability and mitigation procedure, perform deep learning-based attack detection model. The golf optimization algorithm (GOA) done the selection of features followed by deep neural network (DNN) detect the attacks from the selected features. The correntropy variational features validates the level of risk and performs vulnerability assessment. Perform the process of bait-oriented mitigation during the phase of attack mitigation. The proposed approach demonstrates 0.97kbps throughput with 0.2% packet loss ratio than traditional methods.
Detection of cyberattacks using bidirectional generative adversarial network Vallabhaneni, Rohith; Vaddadi, Srinivas A.; Somanathan Pillai, Sanjaikanth E Vadakkethil; Addula, Santosh Reddy; Ananthan, Bhuvanesh
Indonesian Journal of Electrical Engineering and Computer Science Vol 35, No 3: September 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v35.i3.pp1653-1660

Abstract

Due to the progress of communication technologies, diverse information is transmitted in distributed systems via a network model. Concurrently, with the evolution of communication technologies, the attacks have broadened, raising concerns about the security of networks. For dealing with different attacks, the analysis of intrusion detection system (IDS) has been carried out. Conventional IDS rely on signatures and are time-consuming for updation, often lacking coverage for all kinds of attacks. Deep learning (DL), specifically generative methods demonstrate potential in detecting intrusions through network data analysis. This work presents a bidirectional generative adversarial network (BiGAN) for the detection of cyberattacks using the IoT23 database. This BiGAN model efficiently detected different attacks and the accuracy and F-score values achieved were 98.8% and 98.2% respectively.
An efficient convolutional neural network for adversarial training against adversarial attack Vaddadi, Srinivas A.; Somanathan Pillai, Sanjaikanth E. Vadakkethil; Addula, Santosh Reddy; Vallabhaneni, Rohith; Ananthan, Bhuvanesh
Indonesian Journal of Electrical Engineering and Computer Science Vol 36, No 3: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v36.i3.pp1769-1777

Abstract

Convolutional neural networks (CNN) are widely used by researchers due to their extensive advantages over various applications. However, images are highly susceptible to malicious attacks using perturbations that are unrecognized even under human intervention. This causes significant security perils and challenges to CNN-related applications. In this article, an efficient adversarial training model against malevolent attacks is demonstrated. This model is highly robust to black-box malicious examples, it is processed with different malicious samples. Initially, malicious training models like fast gradient descent (FGS), recursive-FGSM (I-FGS), Deep-Fool, and Carlini and Wagner (CW) techniques are utilized that generate adversarial input by means of the CNN acknowledged to the attacker. In the experimentation process, the MNIST dataset comprising 60K and 10K training and testing grey-scale images are utilized. In the experimental section, the adversarial training model reduces the attack accuracy rate (ASR) by an average of 29.2% for different malicious inputs, when preserving the accuracy of 98.9% concerning actual images in the MNIST database. The simulation outcomes show the preeminence of the model against adversarial attacks.
MobileNet based secured compliance through open web application security projects in cloud system Vallabhaneni, Rohith; Vaddadi, Srinivas A; Somanathan Pillai, Sanjaikanth E. Vadakkethil; Addula, Santosh Reddy; Ananthan, Bhuvanesh
Indonesian Journal of Electrical Engineering and Computer Science Vol 35, No 3: September 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v35.i3.pp1661-1669

Abstract

The daunting issues that are promptly faced worldwide are the sophisticated cyber-attacks in all kinds of organizations and applications. The development of cloud computing pushed organizations to shift their business towards the virtual machines of the cloud. Nonetheless, the lack of security throughout the programmatic and declarative levels explicitly prone to cyber-attacks in the cloud platform. The exploitation of web pages and the cloud is due to the uncrated open web application security projects (OWASP) fragilities and fragilities in the cloud containers and network resources. With the utilization of advanced hacking vectors, the attackers attack data integrity, confidentiality, and availability. Hence, it’s ineluctable to frame the application security-based technique for the reduction of attacks. In concern to this, we propose a novel Deep learning-based secured advanced web application firewall to overcome the lack of missing programmatic and declarative level securities in the application. For this, we adopted the MobileNet-based technique to ensure the assurance of security. Simulations are effectuated and analyzed the robustness with the statistical parameters such as accuracy, precision, sensitivity, and specificity and made the comparative study with the existing works. Our proposed technique surpasses all the other techniques and provides better security in the cloud.
Archimedes assisted LSTM model for blockchain based privacy preserving IoT with smart cities Somanathan Pillai, Sanjaikanth E Vadakkethil; Vallabhaneni, Rohith; Vaddadi, Srinivas A; Addula, Santosh Reddy; Ananthan, Bhuvanesh
Indonesian Journal of Electrical Engineering and Computer Science Vol 37, No 1: January 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v37.i1.pp488-497

Abstract

Presently, the emergence of internet of things (IoT) has significantly improved the processing, analysis, and management of the substantial volume of big data generated by smart cities. Among the various applications of smart cities, notable ones include location-based services, urban design and transportation management. These applications, however, come with several challenges, including privacy concerns, mining complexities, visualization issues and data security. The integration of blockchain (BC) technology into IoT (BIoT) introduces a novel approach to secure smart cities. This work presents an Archimedes assisted long short-term memory (LSTM) model intrusion detection for BC based privacy preserving (PP) IoT with smart cities. After the stage of pre-processing, the LSTM is utilized for automated feature extraction and classification. At last, the Archimedes optimizer (AO) is utilized to optimize the LSTM’s hyper-parameters. In addition, the BC technology is utilized for securing the data transmission.
Vulnerability detection in smart contact using chaos optimization-based DL model Vaddadi, Srinivas A; Somanathan Pillai, Sanjaikanth E Vadakkethil; Vallabhaneni, Rohith; Addula, Santosh Reddy; Ananthan, Bhuvanesh
Indonesian Journal of Electrical Engineering and Computer Science Vol 38, No 3: June 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v38.i3.pp1793-1803

Abstract

This research article introduces a deep learning (DL) for identifying vulnerabilities in the smart contracts, leveraging an optimized DL method. The proposed method, termed LogT BiLSTM, combines bidirectional long short-term memory (BiLSTM) with logistic chaos Tasmanian devil optimization (LogT) for enhancing detection of vulnerability. The evaluation of the suggested approach is conducted using publicly available datasets. Initially, preprocessing steps involve removing duplicate data and imputing missing data. Subsequently, the vulnerability detection process utilizes BiLSTM, with the optimization of the loss function achieved through LogT. Results indicate promising performance in identifying vulnerabilities in SC, highlighting the efficacy of the LogT-BiLSTM approach.
TextBugger: an extended adversarial text attack on NLP-based text classification model Somanathan Pillai, Sanjaikanth E. Vadakkethil; Vaddadi, Srinivas A.; Vallabhaneni, Rohith; Addula, Santosh Reddy; Ananthan, Bhuvanesh
Indonesian Journal of Electrical Engineering and Computer Science Vol 38, No 3: June 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v38.i3.pp1735-1744

Abstract

Recently, adversarial input highly negotiates the security concerns in deep learning (DL) techniques. The main motive to enhance the natural language processing (NLP) models is to learn attacks and secure against adversarial text. Presently, the antagonistic attack techniques face some issues like high error and traditional prevention approaches accurately secure data against harmful attacks. Hence, some attacks unable to increase more flaws of NLP models thereby introducing enhanced antagonistic mechanisms. The proposed article introduced an extended text adversarial generation method, TextBugger. Initially, preprocessing steps such as stop word (SR) removal, and tokenization are performed to remove noises from the text data. Then, various NLP models like Bi-directional encoder representations from transformers (BERT), robustly optimized BERT (ROBERTa), and extreme learning machine neural network (XLNet) models are analyzed for outputting hostile texts. The simulation process is carried out in the Python platform and a publicly available text classification attack database is utilized for the training process. Various assessing measures like success rate, time consumption, positive predictive value (PPV), Kappa coefficient (KC), and F-measure are analyzed with different TextBugger models. The overall success rate achieved by BERT, ROBERTa, and XLNet is about 98.6%, 99.7%, and 96.8% respectively.
Deep learning-based secured resilient architecture for IoT-driven critical infrastructure Vaddadi, Srinivas A.; Vallabhaneni, Rohith; Somanathan Pillai, Sanjaikanth E. Vadakkethil; Addula, Santosh Reddy; Ananthan, Bhuvanesh
Indonesian Journal of Electrical Engineering and Computer Science Vol 38, No 3: June 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v38.i3.pp1819-1829

Abstract

While enabling remote management and efficiency improvements, the infrastructure of the smart city becomes able to advance due to the consequences of the internet of things (IoT). The development of IoT in the fields of agriculture, robotics, transportation, computerization, and manufacturing. Based on the serious infrastructure environments, smart revolutions and digital transformation play an important role. According to various perspectives on issues of privacy and security, the challenge is heterogeneous data handling from various devices of IoT. The critical IoT infrastructure with its regular operations is jeopardized by the sensor communication among both IoT devices depending upon the attacker targets. This research suggested a novel deep belief network (DBN) and a secured data dissemination structure based on blockchain to address the issues of privacy and security infrastructures. The non-local means filter performs pre-processing and the feature selection is achieved using the improved crystal structure (ICS) algorithm. The DBN model for the classification of attack and non-attack data. For the non-attacked data, the security is offered via a blockchain network incorporated with the interplanetary file system.