Mohd Daud, Kauthar
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Improving imbalanced class intrusion detection in IoT with ensemble learning and ADASYN-MLP approach Soni, Soni; Remli, Muhammad Akmal; Mohd Daud, Kauthar; Al Amien, Januar
Indonesian Journal of Electrical Engineering and Computer Science Vol 36, No 2: November 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v36.i2.pp1209-1217

Abstract

The exponential growth of the internet of things (IoT) has revolutionized daily activities, but it also brings forth significant vulnerabilities. intrusion detection systems (IDS) are pivotal in efficiently detecting and identifying suspicious activities within IoT networks, safeguarding them from potential threats. It proposes a ensemble approach aimed at enhancing model performance in such scenarios. Recognizing the unique challenges posed by imbalanced class distribution, the research employs three sampling techniques LightGBM adaptive synthetic sampling (ADASYN) with multilayer perceptron (MLP), XGBoost ADASYN with MLP, and LightGBM ADASyn with XGBoost to address class imbalance effectively. Evaluation confusion matrix performance metrics underscores the efficacy of ensemble models, particularly LightGBM ADASYN with MLP, XGBoost ADASYN with MLP, and LightGBM ADASYN with XGBoost, in mitigating imbalanced class issues. The LightGBM ADASYN with MLP model stands out with 99.997% accuracy, showcasing exceptional precision and recall, demonstrating its proficiency in intrusion detection within minimal false positives negatives. Despite computational demands, integrating XGBoost within ensemble frameworks yields robust intrusion detection results, highlighting a balanced trade-off between accuracy, precision, and recall. This research offers valuable insights into the strengths with different ensemble models, significantly contributing to the advancement of accurate and reliable IDS in realm of IoT.