Moussaid, Abdellatif
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Forecasting livestock feed sales using machine learning techniques: an analysis of the Moroccan market Nebri, Mohamed Amine; Moussaid, Abdellatif; Bouikhalene, Belaid
Indonesian Journal of Electrical Engineering and Computer Science Vol 35, No 2: August 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v35.i2.pp1139-1150

Abstract

Agriculture, especially cereals, is important in sustaining economies and food security globally. This study delves into the Moroccan agricultural landscape, specifically focusing on predicting livestock feed sales to assist cereal company producers in optimizing production, streamlining supply chain operations, and enhancing customer satisfaction. Data collected from various markets across Morocco, including sales dates and locations, was combined with climate data and analyzed using advanced machine learning techniques, particularly the gradient boosting regression (GBR) algorithm, which achieved high accuracy with a mean absolute error (MAE) of 0.0203 and a root mean square error (RMSE) of 0.0281. The evaluation of multiple regression models revealed promising results, demonstrating the effectiveness of predictive models in accurately forecasting sales. These findings contribute valuable insights to sales forecasting in the cereal industry by considering weather conditions, production methods, and livestock-related variables, highlighting the importance of leveraging advanced machine learning techniques for optimizing production processes and meeting market demands efficiently in the agribusiness sector.
OPT-TMS: a transport management system based on unsupervised clustering algorithms Reguemali, Soufiane; Moussaid, Abdellatif; Elaoudi, Abdelmajid
Indonesian Journal of Electrical Engineering and Computer Science Vol 39, No 1: July 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v39.i1.pp425-435

Abstract

Transportation management within modern logistics has become increasingly complex, particularly with the expansion of industrial zones outside urban centers. This paper introduces OPT-TMS, a cutting-edge transportation management system (TMS) designed to optimize employee transportation using advanced machine learning techniques, specifically unsupervised learning and clustering algorithms. OPT-TMS integrates a comprehensive dataset that includes employee locations, entry times, bus capacities, and other critical parameters to enhance resource utilization, reduce costs, and improve overall efficiency. The proposed system follows a systematic workflow encompassing data collection, preparation, and adaptive clustering using the K-means algorithm with constraints. The innovative approach leverages real-time data integration through the open route services (ORS) API to optimize bus routes and collection points. Extensive validation, involving both data verification and physical testing, confirms the system’s accuracy and effectiveness across multiple Moroccan cities, including Casablanca, Kenitra, and Marrakech. The development of OPT-TMS into a user-friendly web application further demonstrates its practical utility, offering decision-makers a dynamic tool for real-time adjustments and efficient transportation management. This paper concludes that OPT-TMS represents a significant advancement in transportation logistics, enhancing both employee satisfaction and operational efficiency through data-driven optimization.