Abdildayeva, Assel
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Towards robust security in WSN: a comprehensive analytical review and future research directions Zhukabayeva, Tamara; Zholshiyeva, Lazzat; Ven-Tsen, Khu; Mardenov, Yerik; Adamova, Aigul; Karabayev, Nurdaulet; Abdildayeva, Assel; Baumuratova, Dilaram
Indonesian Journal of Electrical Engineering and Computer Science Vol 36, No 1: October 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v36.i1.pp318-337

Abstract

One of the most important aspects of the effective functioning of wireless sensor network (WSN) is their security. Despite significant progress in WSN security, there are still several unresolved issues. Many review studies have been published on the problems of possible attacks on WSN and their identification. However, due to the lack of their systematic analysis, it is not possible to fully substantiate practical recommendations for the effective application of the proposed solutions in the field of WSN security. In particular, the creation of methods that provide a high degree of security while minimizing computational effort and costs, and the development of effective methods for detecting and preventing attacks on WSN. The purpose of this document is to fill this gap. The article presents the results of the study in the form of a systematic analysis of the literature with a targeted selection of sources to identify the most effective methods for detecting and preventing attacks on WSN. By identifying the security of WSN, which has not yet been addressed in research works, the review aims to reduce its impact. As a result, our extended taxonomy is presented, including attack types, datasets, effective WSN attack detection methods, countermeasures, and intrusion detection systems (IDS).
Markov processes in Bayesian network computation Shayakhmetova, Assem; Tasbolatuly, Nurbolat; Akhmetova, Ardak; Abdildayeva, Assel; Shurenov, Marat; Sultangaziyeva, Anar
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 2: April 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i2.pp2181-2191

Abstract

The article examines the influence of Markov processes on computations in Bayesian networks (BN), an important area of research within probabilistic graphical models. The concept of Bayesian Markov networks (BMN) is introduced, an extension of traditional Bayesian networks with the addition of a Markov constraint, according to which the probability in a node can only depend on the state of neighboring nodes. This constraint makes the model more realistic for many practical tasks, as most graphical models that reflect real-world processes possess the Markov property. The article also discusses that Bayesian networks, in the absence of evidence, actually exhibit the Markov property. However, when evidence (additional information) is introduced into the model, challenges arise that require more complex computational methods. In response, the article proposes algorithms adapted for working with Bayesian Markov networks in the presence of evidence. These algorithms are aimed at optimizing computations and reducing computational complexity. Additionally, a comparative analysis of calculations in Bayesian networks without Markov constraints and with them is conducted, highlighting the advantages and disadvantages of each approach. Special attention is paid to the practical applications of the proposed methods and their effectiveness in various scenarios.