Haritha, Dasari
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Comparative analysis on liver benchmark datasets and prediction using supervised learning techniques Balakrishna, Tilakachuri; Annam, Jagadeeswara Rao; Haritha, Dasari
Indonesian Journal of Electrical Engineering and Computer Science Vol 36, No 2: November 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v36.i2.pp1043-1051

Abstract

Disease diagnosis is most challenging task today. Different datasets are available in web source that contains important features to diagnose the diseases. This paper explores different classification algorithms on medical liver bench mark datasets like BUPA and Indian Liver patient dataset (ILPD). The ILPD is best fit for the model and also gives high classifier accuracy. In proposed model the following classifiers like Naïve Bayes (NB), support vector machine (SVM), K-nearest neighbor (KNN), decision tree (DT), and random forest (RF) classification, multi-layer perceptron (MLP), artificial neural network (ANN), deep belief network (DBN) and probabilistic neural network (PNN) are used. The results shown that ILPD is best dataset for all classifiers and RF classification in particular is best classifier.