Claim Missing Document
Check
Articles

Found 2 Documents
Search

Recognizing Indonesian sign language (Bisindo) gesture in complex backgrounds Saputra, Muhammad Alfhi; Rakun, Erdefi
Indonesian Journal of Electrical Engineering and Computer Science Vol 36, No 3: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v36.i3.pp1583-1593

Abstract

Sign language, particularly Indonesian sign language (Bisindo), is vital for deaf individuals, but learning it is challenging. This study aims to develop an automated Bisindo recognition system suitable for diverse backgrounds. Previous research focused on greenscreen backgrounds and struggled with natural or complex backgrounds. To address this problem, the study proposes using Faster region-based convolutional neural networks (RCNN) and YOLOv5 for hand and face detection, MobileNetV2 for feature extraction, and long short-term memory (LSTM) for classification. The system is also designed to focus on computational efficiency. YOLOv5 model achieves the best result with a sentence accuracy (SAcc) of 49.29% and a word error rate (WER) of 16.42%, with a computational time of 0.0188 seconds, surpassing the baseline model. Additionally, the system achieved a SacreBLEU score of 67.77%, demonstrating its effectiveness in Bisindo recognition across various backgrounds. This research improves accessibility for deaf individuals by advancing automated sign language recognition technology.
Peringkas Teks Otomatis Bahasa Indonesia Secara Abstraktif Menggunakan Metode Long Short-term Memory Saputra, Muhammad Alfhi; Maki, Wikky Fawwaz Al
eProceedings of Engineering Vol. 8 No. 2 (2021): April 2021
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

bstrak Salah satu topik dalam bidang Natural Language Processing (NLP) yang cukup menantang adalah peringkas teks otomatis. Dalam praktiknya peringkas teks otomatis terbagi menjadi dua pendekatan, yaitu ekstraktif dan abstraktif. Pendekatan abstraktif dinilai lebih baik karena cara kerjanya mendekati cara kerja manusia ketika meringkas teks atau yang disebut parafrase. Metode yang digunakan pada penelitian ini adalah Long Short-Term Memory (LSTM) yang mana metode tersebut telah sukses melakukan peringkasan dalam Bahasa Inggris. Dataset yang digunakan adalah kumpulan artikel berita media daring Bahasa Indonesia. Hasil terbaik yang didapatkan pada pengujian dengan metode LSTM menggunakan metode evaluasi ROUGE-1 adalah 0.13846. Kata kunci: peringkas teks otomatis, abstraktif, Bahasa Indonesia, long short-term memory, ROUGE Abstract One topic about natural language processing that is quite challenging is automatic text summarization. Automatic-text-summarization is practically divided into two kinds of approach, namely extractive and abstractive. Abstractive-approach is considered better since it resembles how humans work in terms of text summarizing or paraphrasing. A method used in this study is Long Short-Term Memory (LSTM) which has succeeded to summarize texts in English. Datasets that have been used are a number of online news articles in Bahasa Indonesia. The best result gained using LSTM based on the ROUGE-1 evaluation is 0.13846. Keywords: automatic text summarization, Bahasa Indonesia, long short-term memory, ROUGE