Claim Missing Document
Check
Articles

Found 2 Documents
Search

Comparative Analysis of Imputation Methods for Enhancing Predictive Accuracy in Data Models Zamri, Nurul Aqilah; Jaya, M. Izham; Irawati, Indrarini Dyah; Rassem, Taha H.; Rasyidah, -; Kasim, Shahreen
JOIV : International Journal on Informatics Visualization Vol 8, No 3 (2024)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.8.3.1666

Abstract

The presence of missing values within datasets can introduce a detrimental bias, significantly impeding the predictive algorithm's ability to discern patterns and accurately execute prediction. This paper aims to elucidate the intricacies of data imputation methods, providing a more profound understanding of prevalent imputation methods, including list-wise deletion (IGN), mean imputation (AVG), K-Nearest Neighbors (KNN), MissForest (MF), and Predictive Mean Matching (PMM). The dataset employed in this study consists of financial data about S&P 500 companies in the Compustat North America database. The training and validation dataset encompasses 1973 instances, consisting of data during the fourth quarter of 2009, the first quarter of 2010, and the third quarter of 2014. Within this set, 457 missing values were identified and imputed. The test dataset comprises 197 randomly selected instances from the fourth quarter of 2014, equivalent to ten percent of the total instances in the training dataset. The evaluation findings prominently position the dataset derived from MF imputation as the leading performer among all the imputed datasets. The insights derived from this study are intended to assist practitioners in making informed choices when selecting the most suitable data imputation method, particularly in the context of predictive modeling tasks.
CS-based Lung Covid-Affected X-Ray Image Disorders Classification using Convolutional Neural Network Triasari, Biyantika Emili; Budiman, Gelar; Maidin, Siti Sarah; Jaya, M. Izham; Hariyani, Yuli Sun; Irawati, Indrarini Dyah; Zhao, Zhong
Journal of Applied Data Sciences Vol 5, No 4: DECEMBER 2024
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v5i4.371

Abstract

Lung diseases, such as pneumonia, significantly affect the respiratory system, especially the lungs. This condition causes various degrees of lung damage in patients of all age groups, including the elderly, adults, and children. Even after treatment and recovery, diagnosing lung damage remains important, which can be done using rapid tests, clinical evaluations, CT scans, or X-rays. This study focuses on the classification of X-ray images of lungs affected by pneumonia and normal lungs, using the Convolutional Neural Network method based on Compressive Sensing (CS) simulated using MatLab. The purpose of the study is to determine the performance by calculating the confusion matrix value. The number of datasets used for normal lungs and those affected by pneumonia is 300 X-ray images from several different sources, with 60% training data, 30% validation, and 10% testing. The addition of the compression process causes a decrease in image quality, expressed in PSNR, as well as a decrease in classification parameters such as accuracy. Compared with previous research, the system without compression produces the highest accuracy. The results of the study can help classify lungs affected by pneumonia.