Izzah, Tsabita Nurul
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Classification of Malaria Using Convolutional Neural Network Method on Microscopic Image of Blood Smear Minarno, Agus Eko; Izzah, Tsabita Nurul; Munarko, Yuda; Basuki, Setio
JOIV : International Journal on Informatics Visualization Vol 8, No 3 (2024)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.8.3.2154

Abstract

Malaria, a critical global health issue, can lead to severe complications and mortality if not treated promptly. The conventional diagnostic method, involving a microscopic examination of blood smears, is time-consuming and requires extensive expertise. To address these challenges, computer-assisted diagnostic methods have been explored. Among these, Convolutional Neural Networks (CNN), a deep learning technique, has shown considerable promise for image classification tasks, including the analysis of microscopic blood smear images. In this study, we employ the NIH Malaria dataset, which consists of 27,558 images, to train a CNN model. The dataset is divided into parasitized (malaria-infected) and uninfected. The CNN architecture designed for this study includes three convolutional layers and two fully connected layers. We compare the performance of this model with that of a pre-trained VGG-16 model to determine the most effective approach for malaria diagnosis. The proposed CNN model demonstrates high accuracy, achieving a value of 96.81%. Furthermore, it records a recall of 0.97, a precision of 0.97, and an F1-score of 0.97. These metrics indicate a robust performance, outperforming previous studies and highlighting the model's potential for accurate malaria diagnosis. This study underscores the potential of CNN in medical image classification and supports its implementation in clinical settings to enhance diagnostic accuracy and efficiency. The findings suggest that with further refinement and validation, such models could significantly improve the speed and reliability of malaria diagnostics, ultimately aiding in better disease management and patient outcomes.