Claim Missing Document
Check
Articles

Found 2 Documents
Search

Sistem Penjadwalan Piket Pegawai di Dinas Pencegahan dan Penyelamatan Kota Medan Fikria, Rahma; Puspita Sari, Rika
Innovative: Journal Of Social Science Research Vol. 3 No. 6 (2023): Innovative: Journal Of Social Science Research
Publisher : Universitas Pahlawan Tuanku Tambusai

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Dinas Pencegahan dan Penyelamatan Kota Medan (DPPM) memiliki peran penting dalam menjaga ketertiban, keamanan, dan keselamatan masyarakat Kota Medan. Salah satu tugas utama DPPM adalah memberikan layanan tanggap darurat selama 24 jam sehari, 7 hari seminggu. Untuk memastikan layanan tanggap darurat yang optimal, DPPM membutuhkan penjadwalan piket pegawai yang efektif dan efisien. Penjadwalan piket pegawai DPPM saat ini masih dilakukan secara manual, yang seringkali menghadapi beberapa tantangan, seperti memenuhi semua aturan yang berlaku, mendapatkan jadwal piket yang optimal, dan melakukan perubahan jadwal piket jika diperlukan. Penelitian ini bertujuan untuk mengembangkan sistem penjadwalan piket pegawai DPPM yang lebih optimal menggunakan algoritma genetika. Algoritma genetika merupakan salah satu metode optimasi yang terinspirasi dari proses evolusi alami dan memiliki kemampuan untuk mencari solusi yang optimal secara efisien, bahkan untuk masalah yang kompleks seperti penjadwalan piket pegawai. Sistem penjadwalan piket pegawai DPPM yang dikembangkan menggunakan algoritma genetika diharapkan dapat memenuhi semua aturan yang berlaku, menghasilkan jadwal piket yang optimal, dan mudah untuk melakukan perubahan jadwal piket jika diperlukan. Pengembangan sistem penjadwalan piket pegawai DPPM menggunakan algoritma genetika diharapkan dapat memberikan beberapa manfaat seperti meningkatkan kualitas pelayanan ke masyarakat dan meningkatkan efisiensi dan efektivitas kerja pegawai. Abstract Dinas Pencegahan dan Penyelamatan of Medan City (DPPM) plays a crucial role in maintaining order, security, and safety for the people of Medan City. One of DPPM's primary responsibilities is to provide emergency response services 24/7. To ensure optimal emergency response services, DPPM requires an effective and efficient employee scheduling system. Currently, employee scheduling at DPPM is conducted manually, facing challenges such as adhering to all regulations, achieving an optimal scheduling solution, and making necessary changes to schedules.This research aims to develop an optimal employee scheduling system for DPPM using a genetic algorithm. The genetic algorithm, inspired by natural evolutionary processes, has the capability to efficiently search for optimal solutions, even in complex problems like employee scheduling. The employee scheduling system developed using the genetic algorithm is expected to comply with all regulations, generate optimal schedules, and facilitate ease in making schedule changes when necessary.The development of the employee scheduling system for DPPM using a genetic algorithm is anticipated to bring several benefits, including enhancing the quality of service to the community and improving the efficiency and effectiveness of employee work."
Analisis Metode K-Means Clustering Dalam Pengelompokan Penjualan Sembako Fikria, Rahma; Sriani, Sriani
Journal of Information System Research (JOSH) Vol 5 No 4 (2024): Juli 2024
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/josh.v5i4.5699

Abstract

This research aims to analyze the clustering of staple food sales at PT. Sinarmas Distribusi Nusantara using the K-Means Clustering method. The main problem faced by the company is the lack of clarity in identifying which products have high sales performance and which products require more attention. This issue negatively impacts the effectiveness of the company's marketing and distribution strategies. The K-Means Clustering method is used to divide the sales data of staple food products into several clusters based on the similarity of their characteristics. Sales data is collected and analyzed to group products based on their sales levels. The research results show that out of all the products studied, 5 products fall into the "Fast-Selling" category, 2 products into the "Slow-Selling" category, and 51 products into the "Non-Selling" category. Evaluation of the clustering results using the Davies-Bouldin index yielded a value of 0.8911, indicating a reasonably good clustering quality. In conclusion, the K-Means Clustering method is effective in identifying sales patterns of staple food products, thus providing a basis for strategic decision-making in sales management.