SCARA robots have been used in various fields of robotics, such as biomedical engineering, automation, industrial, and gaming. However, our SCARA (Selective Compliance Assembly Robot Arm) VR model stands out with its realistic design and construction assumptions. The VR testing of the robot's motion envelope has facilitated a more precise inverse kinematics solution and verification of the dynamic process. The intelligent controller of this application, based on the Adaptive Neuro-Fuzzy Inference System (ANFIS) technique and a classical proportional-integral-derivative (PID) controller, offers an optimized solution to the accuracy problem. The hybrid ANFIS controller starts with the PID setting parameters of the resultant solution. Following thorough testing of the suggested SCARA manipulator with an intelligent controller in a virtual reality environment, researchers recognized the physical system's potential for implementation utilizing multiple control approaches. Despite the intricacy of its design and implementation, the intelligent controller's software ensures that the system runs at top efficiency. This application replicates the user interface of the MATLAB/SIMULINK var (2022b), which produced promising robotics results, demonstrating its trustworthiness as a realistic, intelligent model, and virtual reality was critical in the development of the SCARA manipulator. It digs into the design and analysis of a hybrid intelligent controller for SCARA robots, which are widely used in assembly lines and manufacturing. Finally, the proposed controller combines the best features of an Adaptive Neuro-Fuzzy Inference System (ANFIS) with a conventional proportional-integral-derivative (PID) controller to resolve application accuracy difficulties as efficiently as possible.