Claim Missing Document
Check
Articles

Found 2 Documents
Search

Rancang Program Aplikasi Destinasi Pariwisata Berbasis Android Pamungkas, Dimas Arya; Supriyadi, Budi; Widyastuti, Reni
Jurnal Nasional Komputasi dan Teknologi Informasi (JNKTI) Vol 7, No 5 (2024): Oktober 2024
Publisher : Program Studi Teknik Komputer, Fakultas Teknik. Universitas Serambi Mekkah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32672/jnkti.v7i5.8133

Abstract

Abstrak - Program Aplikasi Destinasi Pariwisata Berbasis Android merupakan aplikasi yang menjelaskan mengenai lokasi-lokasi hiburan dan bersejarah yang mengandung nilai histori di Indonesia secara efisien dan hemat tanpa mengeluarkan biaya berlebihan. Pada penelitian Rancang Program Aplikasi Destinasi Pariwisata Berbasis Android Aplikasi dengan menggunakan Android Studio dalam proses pembuatanya. Android Studio adalah sebuah IDE (Integrated Development Environment) untuk mengembangkan perangkat lunak dan dapat dijalankan di semua platform. Bahasa pemodelan system yang digunakan yaitu java dengan layout XML (eXtensible Markup Language). Aplikasi ini dibuat untuk mempermudah bagi touris dari luar negeri dan dalam negeri yang memiliki minimum biaya atau informasi kurang seputar tempat hiburan dan bersejarah di Indonesia, karena aplikasi ini bisa digunakan kapan saja dan dimana saja, mengingat teknologi mobile yang saat ini sudah banyak sekali digunakan khususnya android mobile.Kata kunci: Aplikasi, Android, Pariwisata.  Abstract - Designing an Android-based Tourism Destination Application Program, an application that explains strategic and historic entertainment locations that contain historical value in Indonesia efficiently and economically withoutincurring excessive costs. In the research, Designing a Tourism Destination Application Program Based on Android Applications using Android Studio in the creation process. Android Studio is an Integrated Development Environment (IDE) for developing software and can berun on all platforms. The system modeling language used is Java with XML layout (eXtensible Markup Language). This application was created to make it easier for tourists from abroadand within the country who have minimum costs or lack information about entertainment andhistorical places in Indonesia, because this application can be used anytime and anywhere,considering that mobile technology is currently widely used, especially android mobile.Keywords: Application, Android, Tourism
Implementation of Deep Neural Network in the Design of Ethereum Blockchain Scam Token Detection Applications Pamungkas, Dimas Arya; Kharisma, Ivana Lucia; Simatupang, Dwi Sartika; Kamdan, Kamdan
Sistemasi: Jurnal Sistem Informasi Vol 12, No 3 (2023): Sistemasi: Jurnal Sistem Informasi
Publisher : Program Studi Sistem Informasi Fakultas Teknik dan Ilmu Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32520/stmsi.v12i3.3162

Abstract

The popularity of blockchain continues to increase as technology develops, especially in the context of Ethereum as one of the leading blockchain platforms. However, this increase was also followed by many cases of fraud, especially in the form of tokens. In blockchain technology, tokens often refer to cryptocurrencies or digital currencies used as a means of exchange related to a particular project or platform. This research designs and builds an application system that can detect scam crypto tokens on the Ethereum blockchain, specifically for the ERC-20 (Ethereum Request for Comments 20) token type, which was proposed by Fabian Vogelsteller in November 2015, is a token standard that implements APIs for tokens. in Smart Contracts. Making a scam detection application implements the deep learning method with the Deep Neural Network (DNN) algorithm and evaluates performance using two test scenarios by dividing the dataset into three ratios of training data and test data. The output of the application is JSON-RPC which is integrated with the website. In testing the DNN model, using 80% training data and 20% test data, the DNN algorithm provides an accuracy of 0.997558%. Furthermore, system testing was carried out involving various scenarios to verify its functionality, including input validation, data extraction, DNN prediction, and display of prediction results, which gave good results from the system created. The application has succeeded in identifying scam tokens with high accuracy. , increasing user security in crypto transactions.