Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : International Journal of Robotics and Control Systems

NMPC Based-Trajectory Tracking and Obstacle Avoidance for Mobile Robots Qasim, Mohammed Salim; Ayoub, Abdurahman Basil; Abdulla, Abdulla Ibrahim
International Journal of Robotics and Control Systems Vol 4, No 4 (2024)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v4i4.1605

Abstract

This paper presents the design of a Nonlinear Model Predictive Controller (NMPC) for a wheeled Omnidirectional Mobile Robot (OMR) in order to track a desired trajectory in the presence of previously unknown static and dynamic obstacles in the environment around the robot. A laser rangefinder sensor is used to detect the obstacles where each obstacle occupies numerous points of every sensor reading. The points that belong to each obstacle are then clustered together using the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm. This research introduces a novel approach to represent obstacles as multiple rotated ellipses, enabling a more accurate representation of complex obstacle shapes without overestimating their boundaries, thereby allowing the robot to navigate through narrow passages. CoppeliaSim robotic simulator is utilized to create the virtual simulation environment as well as simulate the OMR dynamics. MATLAB with the help of the CasADi toolbox is used for the process of the laser rangefinder readings and the implementation of NMPC, respectively.  To validate the effectiveness and robustness of the proposed approach, three simulation scenarios are conducted, each involving distinct trajectories and varying densities of static and/or dynamic obstacles. The proposed control architecture exhibits remarkable performance, enabling the OMR to effectively navigate through narrow passages and avoid multiple static and dynamic obstacles while closely adhering to the desired trajectory.
Boost Converter Control Using Proportional-Integral-Derivative Controller Optimized by Whale Optimization Algorithm Thanoon, Mohammad A; Almaged, Mohammed; Abdulla, Abdulla Ibrahim
International Journal of Robotics and Control Systems Vol 5, No 3 (2025)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v5i3.1912

Abstract

This work offers an improved control approach for a boost converter called WOA_PID by combining a Whale Optimization Algorithm (WOA) with a Proportional-Integral-Derivative (PID) controller. The main goal is to optimize the PID controller gains for better voltage control and improved system stability and performance. Although boost converters are employed for step-up DC-DC conversion, they have nonlinear dynamics and sudden load changes that create major problems in conventional controller tuning. This work guarantees improved transient response and lower steady-state error by using the WOA employed as an optimization tool to effectively optimize the PID gains by minimizing the Integral Square Error (ISE) performance index. Simulations are used to assess the suggested WOA_PID controller, which showed better performance than traditional PID tuning techniques. The key aspects are zero overshoot, quicker rise and settling time of 0.216 and 0.654 respectively as well as improved output voltage control under changing load situations. Findings verify the efficiency of the WOA-based tuning approach in optimizing the PID controller for boost converters, providing a robust solution for practical applications in power electronics.