Tomi Erfando
Department of Petroleum Engineering, Faculty of Engineering, Universitas Islam Riau

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Heterogeneity Effect on Polymer Injection: a Study of Sumatra Light Oil Romal Ramadhan; Adi Novriansyah; Tomi Erfando; Suparit Tangparitkul; Arik Daniati; Asep Kurnia Permadi; Muslim Abdurrahman
Scientific Contributions Oil and Gas Vol 46 No 1 (2023)
Publisher : Testing Center for Oil and Gas LEMIGAS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29017/SCOG.46.1.1334

Abstract

The production of oil and gas is heavily dependent on the heterogeneity of the reservoir. Optimizing the production plan and maximizing recovery from the reservoir depends on an understanding of how heterogeneity affects fluid flow and recovery. Techniques such as water flooding and polymer flooding were used to increase oil production from reservoirs while evaluating the impact of reservoir heterogeneity. Numerical simulations in homogeneous and heterogeneous models were performed in this research to identify the optimal operational parameters that will optimize oil recovery and assess the effect of heterogeneity in the reservoir on the recovery factor of the reservoir. The result showed that the homogeneous model obtained 59.86% of the oil recovery factor, while the heterogeneous reservoirs for Lk = 0.2, 0.4, and 0.6 resulted from 45.83%, 69.27%, and 80.46% of oil recovery after twenty years of production, respectively. The heterogeneous reservoir with Lk = 0.6 indicated the highest sweep efficiency compared to other scenarios, while the reservoir with Lk = 0.2 showed the lowest sweep efficiency
Pectin Extraction of Jackfruit Peel as a Biopolymer Potential with Microwave Assisted Extraction Method Muhammad Khairul Afdhol; Fiki Hidayat; Tomi Erfando; Dita Putri Purnama
Scientific Contributions Oil and Gas Vol 47 No 2 (2024)
Publisher : Testing Center for Oil and Gas LEMIGAS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29017/SCOG.47.2.1618

Abstract

Polyacrylamide and polysaccharides are commonly used polymers, but they have certain disadvantages. Hydrolyzed polyacrylamide (HPAM) is particularly susceptible to harsh reservoir conditions, including high shear forces, salinity, and temperature. Xanthan gum biopolymer has drawbacks, such as high cost and susceptibility to reservoir biodegradation. In contrast, pectin is a viable alternative owing to its excellent biodegradability, natural decomposition, transparency, good elongation properties, and strong gel-forming ability. In this study, we characterize and analyze the rheology of biopolymers derived from jackfruit skin. Jackfruit peel, a waste product, contains a high pectin content of 23.47%, which can be extracted through microwave assisted extraction (MAE). The MAE method combines microwave and solvent extraction, offering the advantage of a fast extraction time. The resulting biopolymer is expected to enhance water viscosity and meet characterization standards for petroleum applications. FTIR test results reveal the functional groups that constitute the pectin compounds. Biopolymer concentrations used were 1,000, 2,000, and 3,000 ppm. The viscosity values of pectin were 0.503, 0.565, and 0.592 cp, while the viscosity values of xanthan gum were 1.266, 3.096, and 13.13 cp. Pectin has a lower viscosity compared to xanthan gum, and the viscosity of both biopolymers decreases as salinity increases. The reduction in viscosity for pectin during thermal testing was 26%, 28%, and 30%, whereas for xanthan gum, it was 21%, 49%, and 42%. This decrease in viscosity is attributed to the high shear rate and high salinity, which disrupt gel formation. 
Utilization of Jenitri as A Bioadsorbent in Petroleum Field-Produced Water Muhammad Khairul Afdho; Rika Lala Saputri; Adiella Zakky Juneid; Razif Muhammed Nordin; Muhammad Salihin Bin Zakaria; Tomi Erfando
Scientific Contributions Oil and Gas Vol 48 No 1 (2025)
Publisher : Testing Center for Oil and Gas LEMIGAS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29017/scog.v48i1.1734

Abstract

As oil and gas fields mature, the volume of produced water can increase substantially, often exceeding 90% of total production. This water cannot be directly discharged or reused due to harmful contaminants that pose considerable environmental risks. One major challenge is the absence of efficient, eco-friendly, and cost-effective filtration media for its treatment. This study aimed to develop and assess an alternative adsorbent derived from jenitri seeds, chemically activated with potassium hydroxide (KOH) at controlled temperatures. The primary goal was to identify a more effective and sustainable adsorbent than those currently used in oilfield operations. The methodology involved the preparation of this adsorbent, Its physicochemical characterization included bulk density measurement, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) analyses, along with performance testing through filtration, benchmarked against natural adsorbents such as candlenut and walnut. The KOH-activated jenitri demonstrated superior pollutant removal performance, primarily due to enhanced porosity and surface area resulting from the activation process. It exhibited the lowest bulk density (0.6 g/mL), an optimal porous structure as revealed by SEM, and the presence of active functional groups such as –OH, C=O, and C–O, identified through FTIR analysis. In filtration tests, KOH-activated jenitri effectively reduced total dissolved solids (TDS) to 600 mg/L and turbidity to 100–200 nephelometric turbidity units (NTU), outperforming natural jenitri, candlenut, and walnut, whose limited porosity contributed to lower adsorption efficiency