Molliq Rangkuti, Yulita
Unknown Affiliation

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Determining Tourist Destination Priorities Using Website-Based Particle Swarm Optimization Methods (Case Study : North Padang Lawas Regency) Salsabila, Aqila; Molliq Rangkuti, Yulita; Muslim Karo Karo, Ichwanul; Iskandar Al-Idrus , Said
Journal of Mathematics, Computations and Statistics Vol. 7 No. 2 (2024): Volume 07 Nomor 02 (Oktober 2024)
Publisher : Jurusan Matematika FMIPA UNM

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35580/jmathcos.v7i2.4233

Abstract

. Optimization of tourist routes is very important to minimize travel time and reduce travel costs. This study focuses on optimizing tourist routes in North Padang Lawas Regency using Multi Attribute Utility Theory (MAUT), and Particle Swarm Optimization (PSO) in the context of the Traveling Salesman Problem (TSP). This study discusses problems such as the lack of priority of tourist destinations and the need for shorter travel times. The research process includes problem identification, literature review, data collection through field observations and interviews, and data processing with MAUT to prioritize destinations. The identified priority destinations are Hotel Sapadia Gunung Tua, Barumun Nagari, Batik Sekar Najogi, Durian and Manggis Agrotourism, Rumah Makan Holat Alhamdulillah, Waterboom Gunung Tua, and Candi Bahal I, II, III. Furthermore, PSO is applied to determine the optimal travel route. PSO finds a route with a total travel time of 351 minutes, although the three-day travel time is extended to 375 minutes.
PENERAPAN ALGORITMA DECISION TREE DALAM PEMBERIAN REKOMENDASI BANTUAN SISWA MISKIN (BSM) DI SEKOLAH DASAR SWASTA ARSYADIAH Mawardi, Mariyani; Molliq Rangkuti, Yulita; Ritonga, Arnah
JATI (Jurnal Mahasiswa Teknik Informatika) Vol. 8 No. 6 (2024): JATI Vol. 8 No. 6
Publisher : Institut Teknologi Nasional Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36040/jati.v8i6.11950

Abstract

Pemerintah memiliki kewajiban untuk memberikan kesempatan seluasnya dan memberi kemudahan kepada masyarakat untuk mengikuti pendidikan sampai tamat SMA (Sekolah Menengah Atas). Bantuan Siswa Miskin (BSM) adalah Program Nasional yang bertujuan untuk membantu meringankan siswa miskin untuk bersekolah dengan bantuan akses pelayanan pendidikan yang layak. Pemberian BSM (Bantuan Siswa Miskin) disalurkan oleh Kementrian Pendidikan dan Kebudayaan melalui Direktorat Pembinaan Sekolah Dasar kepada setiap SD (Sekolah Dasar) diseluruh Indonesia. Pengumpulan data bantuan siswa miskin di SD Swasta Arsyadiah Medan masih menggunakan cara yang manual sehingga pemberian bantuan dilakukan dalam waktu yang lama (±3-4 minggu) Masalah lain yang ditemukan adalah adanya bantuan yang tidak tepat sasaran sehingga ada siswa yang kurang mampu namun tidak diberikan bantuan oleh pihak sekolah. Penelitian ini bertujuan untuk mengidentifikasi faktor-faktor yang memengaruhi rekomendasi bantuan siswa miskin dan mengevaluasi penerapan algoritma Decision Tree di Sekolah Dasar Swasta Arsyadiah. Data primer dikumpulkan melalui survei dan wawancara, sementara data sekunder berasal dari Sekolah Dasar Harapan Mulia. Algoritma Decision Tree diterapkan pada dataset siswa kelas 1-6 di Arsyadiah, dengan evaluasi menggunakan teknik 5 K-Fold Cross Validation. Model di Arsyadiah memiliki akurasi 63.8%, sementara di Harapan Mulia akurasinya 94.4%. Uji one-tail t-test menunjukkan perbedaan signifikan, mengindikasikan model lebih akurat pada data sekunder. Penelitian menyimpulkan bahwa faktor-faktor spesifik memengaruhi rekomendasi, dan algoritma ini efektif dalam memberikan rekomendasi bantuan meskipun akurasinya berbeda pada dataset yang digunakan.
The Implementation of the DIANA Method to Map the Spread of Tuberculosis in North Sumatra Visualized on a Website : Mapping Tuberculosis Cases Using DIANA Clustering and Interactive Visualizations Gunawan, Rizky; Molliq Rangkuti, Yulita; Muslim Karo Karo, Ichwanul
Journal of Mathematics, Computations and Statistics Vol. 8 No. 1 (2025): Volume 08 Nomor 01 (April 2025)
Publisher : Jurusan Matematika FMIPA UNM

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35580/jmathcos.v8i1.6590

Abstract

Tuberculosis disease has a high prevalence rate in North Sumatra, thus requiring an0 appropriate handling strategy. This article aims to map Tuberculosis cases in North Sumatra Province using the Divisive Analysis (DIANA) method visualized on a website. The DIANA method is used to cluster Tuberculosis case data based on certain characteristic patterns such as case rate, mortality rate, and cure rate. The DIANA (Divisive Analysis Clustering) clustering method starts with the entire data as one large cluster, which is then broken down gradually into smaller subclusters based on the level of dissimilarity between elements. Splitting starts from the element furthest from the cluster center, followed by evaluation of other elements to determine the corresponding cluster. This process continues until clusters are formed at the desired level of granularity. The results of the analysis show that clustering with the DIANA method produces clusters that separate areas with high, medium, and low case rates. Evaluation of clustering using the Davies Bouldin Index (DBI) showed the best value of 0.2943 in 2022. In addition, this article produces a Leafletjs-based interactive map to visualize the clustering results, so that it can be used to identify priority areas for intervention. From the mapping results, it was obtained that one district/city in North Sumatra, namely Medan City, entered the red zone, then Deli Serdang Regency was included in the orange zone, then Simalungun Regency, Binjai City, Langkat Regency, Mandailing Natal Regency, Serdang Bedagai Regency and Asahan Regency entered the yellow zone. Finally, there are 25 regencies/municipalities in the green zone consisting of Kab. West Nias, Kota Tebing Tinggi, Kab. Dairi, Kab. Pakpak Bharat, Kab. Padang Lawas Utara, Kota Tanjung Balai, Kab. Labuhan Batu Selatan, Kab. Karo, Kota Padangsidimpuan, Kab. Padang Lawas, Pematang Siantar City, Gunung Sitoli City, Sibolga City, South Nias Regency, Coal Regency, Samosir Regency, Humbang Hasundutan Regency, North Tapanuli Regency, Nias Regency, Central Tapanuli Regency, North Nias Regency, Labuhan Batu Regency, North Labuhan Batu Regency, South Tapanuli Regency, and Toba Samosir Regency.