Nutritional status is important for children's growth and development, as well as for measuring nutritional adequacy. Posyandu Tanjung XXIV is a facility for routinely recording children's growth and development, but it still uses manual processes to determine nutritional status so it is not yet effective. Data processing is needed to help predict children's nutritional status. Machine Learning is used for data processing and predicting data based on algorithmic patterns. Previous research related to nutritional status using Machine Learning has been carried out but resulted in a small level of accuracy in the Naïve Bayes algorithm, so accuracy needs to be increased. This research aims to implement Machine Learning using Naïve Bayes combined with the Adaboost method to increase the accuracy of the Posyandu Tanjung XXIV toddler dataset. The research uses variable dataWeight by Age, Height by Age, Weight by Height. The results of the research show that the implementation of Naïve Bayes using Adaboost increases accuracy with results of 100% accuracy, an increase of 6.67% from the implementation of Naïve Bayes independently with results of 93.33%.Keywords: Nutritional status; Machine Learning; Naive Bayes; Adaboost AbstrakStatus Gizi hal yang penting bagi pertumbuhan dan perkembangan anak, serta untuk mengukur kecukupan zat gizi. Posyandu Tanjung XXIV merupakan fasilitas untuk mendata pertumbuhan dan perkembangan anak secara rutin, namun masih menggunakan proses manual untuk menentukan status gizi sehingga belum efektif. Perlu pengolahan data untuk membantu memprediksi status gizi anak. Machine Learning digunakan untuk pengolahan data serta memprediksi data berdasarkan pola algoritma. Penelitian sebelumnya terkait status gizi menggunakan Machine Learning sudah dilakukan namun menghasilkan tingkat akurasi kecil pada algoritma Naïve Bayes, sehingga perlu peningkatan akurasi. Penelitian ini bertujuan untuk implementasi Machine Learning menggunakan Naïve Bayes dikombinasikan dengan metode Adaboost untuk meningkatkan akurasi dataset balita Posyandu Tanjung XXIV. Penelitian menggunakan data variable Berat Badan menurut Umur, Tinggi Badan menurut Umur, Berat Badan menurut Tinggi Badan. Hasil dari penelitian menunjukkan implementasi Naïve Bayes menggunakan Adaboost meningkatkan akurasi dengan hasil akurasi 100%, meningkat sebesar 6,67% dari penerapan Naïve bayes mandiri dengan hasil 93,33%Kata kunci: Status Gizi; Machine Learning; Naive Bayes; AdaboostÂ