Purwandaru, Dhanang
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Comparative Analysis of Multicriteria Inventory Classification and Forecasing: A Case Study in PT XYZ Purwandaru, Dhanang; Ruldeviyani, Yova; Nugraheni, Sani; Prisillia, Galuh
Jurnal Informatika Ekonomi Bisnis Vol. 6, No. 4 (December 2024)
Publisher : SAFE-Network

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37034/infeb.v6i4.1014

Abstract

One crucial aspect of supply chain management is inventory management. Inefficient inventory management can lead to various issues, such as product expiration, where a high number of items in the warehouse either have expired or are approaching expiration. This issue is experienced by a distribution SME in Indonesia, PT XYZ. Without such classifications, it becomes challenging to predict demand and manage stock levels efficiently. Therefore, the aim of this study is to classify inventory to identify the most important items to business and make a forecasting model of sales quantity to predict inventory replenishment using machine learning algorithms. To advance our research, we adopted the Cross Industry Standard Process for Data Mining (CRISP-DM) methodology. For inventory classification, we conducted a hybrid approach that combined TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and ABC analysis (A: high-value items, B: medium-value items, and C: low-value items). The data employed in this study comprised secondary data, including purchase orders, sales orders, and stock movement records. The result reveals that 11 of the total 383 items under class A are important items for business. After obtaining labels from the ABC Analysis, we proceed to train models using KNN, SVC, and Random Forest for predicting inventory classification. Notably, the Random Forest model showcased remarkable performance and outperformed the rest of the models, achieving an accuracy of 99.21%. For inventory forecasting ARIMA displays a competitive performance with RMSE value 5.305 and MAE value 3.476, indicating a relatively accurate prediction with lower forecasting errors than two other models
Comparative Analysis of Multicriteria Inventory Classification and Forecasing: A Case Study in PT XYZ Purwandaru, Dhanang; Ruldeviyani, Yova; Nugraheni, Sani; Prisillia, Galuh
Jurnal Informatika Ekonomi Bisnis Vol. 6, No. 4 (December 2024)
Publisher : SAFE-Network

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37034/infeb.v6i4.1014

Abstract

One crucial aspect of supply chain management is inventory management. Inefficient inventory management can lead to various issues, such as product expiration, where a high number of items in the warehouse either have expired or are approaching expiration. This issue is experienced by a distribution SME in Indonesia, PT XYZ. Without such classifications, it becomes challenging to predict demand and manage stock levels efficiently. Therefore, the aim of this study is to classify inventory to identify the most important items to business and make a forecasting model of sales quantity to predict inventory replenishment using machine learning algorithms. To advance our research, we adopted the Cross Industry Standard Process for Data Mining (CRISP-DM) methodology. For inventory classification, we conducted a hybrid approach that combined TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and ABC analysis (A: high-value items, B: medium-value items, and C: low-value items). The data employed in this study comprised secondary data, including purchase orders, sales orders, and stock movement records. The result reveals that 11 of the total 383 items under class A are important items for business. After obtaining labels from the ABC Analysis, we proceed to train models using KNN, SVC, and Random Forest for predicting inventory classification. Notably, the Random Forest model showcased remarkable performance and outperformed the rest of the models, achieving an accuracy of 99.21%. For inventory forecasting ARIMA displays a competitive performance with RMSE value 5.305 and MAE value 3.476, indicating a relatively accurate prediction with lower forecasting errors than two other models