Christin Adelia Pratiwi Sihite
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Performance Analysis of MobileNetV3-based Convolutional Neural Network for Facial Skin Disorder Classification Herimanto; Arie Satia Dharma; Junita Amalia; David Largo; Christin Adelia Pratiwi Sihite
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 8 No 6 (2024): December 2024
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v8i6.5982

Abstract

Accurately identifying facial skin types is essential for recommending the right skincare treatments and products. Misidentifying skin types can lead to negative consequences, such as irritation or worsening of skin conditions. This study investigated methods for classifying facial skin types into five categories: oily, acne-prone, dry, normal, and combination. A dataset of 1725 augmented facial images was used. Data augmentation techniques likely increased the dataset's diversity, which helps improve the model's generalization ability. The data underwent preprocessing, including rescaling, before being applied to two deep learning models, CNN and MobileNetV3. The models were evaluated based on accuracy and execution time to determine the most effective approach for classifying facial skin types. The CNN model achieved an accuracy of 64%, demonstrating its potential for image classification tasks. However, the MobileNetV3 model significantly outperformed CNN with an accuracy of 84%. This superior performance is attributed to MobileNetV3's advanced architecture, which is optimized for efficient feature extraction, and particularly relevant for capturing the subtle variations in facial skin types. Therefore, MobileNetV3 emerged as the more effective method for classifying facial skin types with higher accuracy.