Abiyan Naufal Hilmi
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Implementasi Algoritma K-Nearest Neighbor (KNN) untuk Identifikasi Penyakit pada Tanaman Jeruk Berdasarkan Citra Daun Abiyan Naufal Hilmi; Eva Yulia Puspaningrum; Henni Endah Wahanani
Router : Jurnal Teknik Informatika dan Terapan Vol. 2 No. 2 (2024): Juni : Router: Jurnal Teknik Informatika dan Terapan
Publisher : Asosiasi Riset Teknik Elektro dan Informatika Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62951/router.v2i2.78

Abstract

The development of image processing technology today can create systems that are able to effectively recognize digital images, one of which is in the field of agriculture for plant disease identification. Citrus plants experience a decrease in productivity due to pathogen attacks on leaves such as Black Spot, Cancer, and CVDP so that disease identification is needed. The classification method that can be used to classify images is the K-Nearest Neighbor (K-NN) algorithm because it is simple and has high accuracy in image management. This study aims to implement and determine the performance of the K-NN algorithm in identifying citrus plant diseases based on leaf images. This research uses a dataset from the Kaggle website of 1,096 images. There are 12 research scenarios using the comparison between test data and training data as much as 4, namely (90% training data + 10% test data, 80% training data + 20% test data, 70% training data + 30% test data, 60% training data + 40% test data) and testing with 3 random state values (42, 32, 22). The results showed that the K-NN algorithm is very effective in identifying citrus plant diseases with the highest accuracy value in the 90% training data scenario and 10% test data with a value of K = 2 which is 98.5%.
Implementasi Algoritma K-Nearest Neighbor (KNN) untuk Identifikasi Penyakit pada Tanaman Jeruk Berdasarkan Citra Daun Abiyan Naufal Hilmi; Eva Yulia Puspaningrum; Henni Endah Wahanani
Router : Jurnal Teknik Informatika dan Terapan Vol. 2 No. 2 (2024): Juni : Router: Jurnal Teknik Informatika dan Terapan
Publisher : Asosiasi Riset Teknik Elektro dan Informatika Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62951/router.v2i2.78

Abstract

The development of image processing technology today can create systems that are able to effectively recognize digital images, one of which is in the field of agriculture for plant disease identification. Citrus plants experience a decrease in productivity due to pathogen attacks on leaves such as Black Spot, Cancer, and CVDP so that disease identification is needed. The classification method that can be used to classify images is the K-Nearest Neighbor (K-NN) algorithm because it is simple and has high accuracy in image management. This study aims to implement and determine the performance of the K-NN algorithm in identifying citrus plant diseases based on leaf images. This research uses a dataset from the Kaggle website of 1,096 images. There are 12 research scenarios using the comparison between test data and training data as much as 4, namely (90% training data + 10% test data, 80% training data + 20% test data, 70% training data + 30% test data, 60% training data + 40% test data) and testing with 3 random state values (42, 32, 22). The results showed that the K-NN algorithm is very effective in identifying citrus plant diseases with the highest accuracy value in the 90% training data scenario and 10% test data with a value of K = 2 which is 98.5%.