Syah, Adryan
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

ANALISIS SENTIMEN APLIKASI SHOPEE, TOKOPEDIA, LAZADA DAN BLIBLI MENGGUNAKAN LEKSIKON DAN RANDOM FOREST Syah, Adryan; Nurdiyansyah, Firman; Rahman, Aviv Yuniar
Jurnal Informatika dan Teknik Elektro Terapan Vol 12, No 3S1 (2024)
Publisher : Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jitet.v12i3S1.5155

Abstract

Abstrak. Dalam era digital, aplikasi e-commerce telah menjadi sarana utama bagi masyarakat untuk berbelanja. Keberhasilan aplikasi e-commerce tidak hanya bergantung pada fungsionalitasnya tetapi juga pada pengalaman pengguna. Ulasan pengguna di Play Store menjadi indikator penting dalam mengevaluasi kepuasan dan sentimen pengguna terhadap aplikasi tertentu. Penelitian ini bertujuan untuk menganalisis sentimen pada ulasan aplikasi Shopee, Tokopedia, Lazada, dan Blibli di Play Store menggunakan pendekatan Lexicon-based dan algoritma Random Forest. Metode ini dipilih untuk memberikan interpretasi yang jelas terhadap sentimen teks dan meningkatkan akurasi analisis sentimen. Hasil penelitian menunjukkan bahwa aplikasi Lazada memiliki kinerja terbaik dengan akurasi 88,33%, presisi 88,88%, recall 88,33%, dan F1 score 88,34%. Aplikasi Blibli berada di posisi kedua dengan akurasi 85,66%, presisi 85,82%, recall 85,66%, dan F1 score 85,60%. Shopee memiliki akurasi 85,16%, presisi 85,62%, recall 85,16%, dan F1 score 85,26%. Tokopedia menunjukkan performa terendah dengan akurasi 80,33%, presisi 80,96%, recall 80,33%, dan F1 score 80,12%. Penelitian ini menunjukkan bahwa rasio pembagian data latih dan data uji mempengaruhi kinerja model, dengan model bekerja lebih efektif ketika jumlah data latih lebih besar dari data uji.
ANALISIS SENTIMEN APLIKASI SHOPEE, TOKOPEDIA, LAZADA DAN BLIBLI MENGGUNAKAN LEKSIKON DAN RANDOM FOREST Syah, Adryan; Nurdiyansyah, Firman; Rahman, Aviv Yuniar
Jurnal Informatika dan Teknik Elektro Terapan Vol. 12 No. 3S1 (2024)
Publisher : Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jitet.v12i3S1.5155

Abstract

Abstrak. Dalam era digital, aplikasi e-commerce telah menjadi sarana utama bagi masyarakat untuk berbelanja. Keberhasilan aplikasi e-commerce tidak hanya bergantung pada fungsionalitasnya tetapi juga pada pengalaman pengguna. Ulasan pengguna di Play Store menjadi indikator penting dalam mengevaluasi kepuasan dan sentimen pengguna terhadap aplikasi tertentu. Penelitian ini bertujuan untuk menganalisis sentimen pada ulasan aplikasi Shopee, Tokopedia, Lazada, dan Blibli di Play Store menggunakan pendekatan Lexicon-based dan algoritma Random Forest. Metode ini dipilih untuk memberikan interpretasi yang jelas terhadap sentimen teks dan meningkatkan akurasi analisis sentimen. Hasil penelitian menunjukkan bahwa aplikasi Lazada memiliki kinerja terbaik dengan akurasi 88,33%, presisi 88,88%, recall 88,33%, dan F1 score 88,34%. Aplikasi Blibli berada di posisi kedua dengan akurasi 85,66%, presisi 85,82%, recall 85,66%, dan F1 score 85,60%. Shopee memiliki akurasi 85,16%, presisi 85,62%, recall 85,16%, dan F1 score 85,26%. Tokopedia menunjukkan performa terendah dengan akurasi 80,33%, presisi 80,96%, recall 80,33%, dan F1 score 80,12%. Penelitian ini menunjukkan bahwa rasio pembagian data latih dan data uji mempengaruhi kinerja model, dengan model bekerja lebih efektif ketika jumlah data latih lebih besar dari data uji.