Claim Missing Document
Check
Articles

Found 1 Documents
Search

Implementasi Aplikasi Web Pemilihan Kelas Berdasarkan Minat Menggunakan Algoritma K-Means Clustering Rose, Clarenza Dixie; Aji, Bernadus Anggo Seno; Rahmanti, Farah Zakiyah
Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi) Vol 9 No 1 (2025): JANUARI-MARET 2025
Publisher : Lembaga Otonom Lembaga Informasi dan Riset Indonesia (KITA INFO dan RISET)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35870/jtik.v9i1.3165

Abstract

Giki High School has a large number of 10th grade students and the need to provide class recommendations based on student interests in current subjects is done conventionally. This study aims to help schools make more informed decisions in class selection. This study implements a web application. The implementation of the category selection web application was created using the K-means Clustering algorithm and integrated into the web using Tkinter as the standard GUI library for Python. This implementation goal is to make school life easier to determine class recommendations for students. Results of the K-Means algorithm produce 4 clusters: Cluster 1 (Indonesian, Social Studies, and Mathematics), Cluster 2 (English), Cluster 3 (Indonesian and Science), Cluster 4 (English and Science) with the Silhouette Score results giving a score of 0.6233 which indicates that the score calculation is at 0 that the data point is the center of each cluster.