Muhammad Fernanda Naufal Fathoni
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Perbandingan Performa Labeling Lexicon InSet dan VADER pada Analisa Sentimen Rohingya di Aplikasi X dengan SVM Muhammad Fernanda Naufal Fathoni; Eva Yulia Puspaningrum; Andreas Nugroho Sihananto
Modem : Jurnal Informatika dan Sains Teknologi. Vol. 2 No. 3 (2024): Juli : Modem : Jurnal Informatika dan Sains Teknologi
Publisher : Asosiasi Riset Teknik Elektro dan Informatika Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62951/modem.v2i3.112

Abstract

Rohingya in Indonesia has become trending conversation on social media. Sentiment analysis can get public responds. Big data makes the problem time efficiency labeling process, therefore the lexicon dictionary is needed for the labeling process. Data is growing and circulating very rapidly so it takes a fast and efficient time. Although it is fast and makes it easier to solve problems, it is still necessary to question the accuracy produced when using the lexicon labeling. A comparison of the labeling process between the InSet lexicon and the VADER lexicon was conducted to determine the accuracy of the labeling. It was done by combining lexicon with machine learning method of support vector machine and TF-IDF weighting and accuracy result calculated using confusion marix. Data from social media X as many as 9117 lines and labeled with InSet lexicon result 5241 negative sentiments, 1369 positive, and 521 neutral. Then the labeling results with VADER produced 2749 positive, 2523 negative, and 1881 neutral. After labeled, processed SVM and calculated accuracy with results of InSet lexicon accuracy having an average of 85.8% while the VADER SVM lexicon has an average of 82.65%.