Claim Missing Document
Check
Articles

Found 2 Documents
Search

Penggunaan Turunan Parsial untuk Analisis Risiko Keuangan dan Ekonomi Tiara Febrianti Br Panjaitan; Valeri Agatha Br Sihombing; Vauline Christin Octavia Siregar
Jurnal Riset Ekonomi dan Akuntansi Vol. 3 No. 1 (2025): JURNAL RISET EKONOMI DAN AKUNTANSI
Publisher : Institut Teknologi dan Bisnis (ITB) Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54066/jrea-itb.v3i1.2777

Abstract

Partial derivatives play an important role in analyzing the dynamics of financial and economic systems involving many variables. This research explores the application of partial derivatives in financial risk models, including calculating portfolio sensitivity, volatility analysis, and estimating value at risk. Apart from that, it is also applied to economic models to analyze the impact of changes in economic variables on aggregate output. The case studies involve the use of partial derivatives in the Black-Scholes model for financial options and the IS-LM model in macroeconomics. The research results show that this mathematical approach increases prediction accuracy and helps strategic decision making.
Implementasi Metode Eurel untuk Penyelesaian Persamaan Diferensial pada Dinamika Populasi Aprilia Cristina Sianturi; Bali Sahputri Br Tarigan; Tantory Yahya Purba; Valeri Agatha Br Sihombing
Katalis Pendidikan : Jurnal Ilmu Pendidikan dan Matematika Vol. 1 No. 4 (2024): Desember : Katalis Pendidikan : Jurnal Ilmu Pendidikan dan Matematika
Publisher : Lembaga Pengembangan Kinerja Dosen

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62383/katalis.v1i4.854

Abstract

This study aims to solve the population dynamics model using the Euler method, where the model is a nonlinear differential equation. The research methods used are literature study and simulation methods. In theory, the Euler Method is a numerical method that is often used in solving initial value problems. The Euler method is obtained by decomposing a function into a Taylor series up to two initial terms. This method has an accuracy of one.