Claim Missing Document
Check
Articles

Found 3 Documents
Search

Penerapan Metode Asosiasi untuk Rekomendasi Bahan Makanan Vegetarian dan Penentu Kebutuhan Kalori Berbasis Android Jody, Jody; Mutiah, Nurul; Sari, Renny Puspita
Coding: Jurnal Komputer dan Aplikasi Vol 12, No 1 (2024): Edisi April 2024
Publisher : Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/coding.v12i1.77533

Abstract

Vegetarian merupakan upaya mengatur pola hidup untuk menyelaraskan diri dengan alam dengan hanya mengonsumsi tumbuhan saja sebagai makanan. Namun tidak mudah bagi seseorang untuk menjadi vegetarian, karena kebutuhan dari setiap manusia berbeda "“ beda. Oleh sebab itu dibutuhkan alat atau media untuk mengetahui jumlah kalori yang dibutuhkan setiap hari salah satunya menggunakan Basal Metabolic Rate (BMR). Aplikasi dalam bentuk mobile sangat efisien dan mudah dipelajari maka dari itu dilakukan penelitian untuk membangun apps yang dapat membantu untuk menghitung kebutuhan kalori perhari dan merekomendasikan bahan makanan vegetarian. Untuk mencapai hasil yang maksimal maka proses pengembangan digambarkan pada kerangka kerja penelitian yang dipilih menggunakan IS Research. Penelitian ini menggunakan metode Basal Metabolic Rate (BMR) untuk menentukan kalori dan association rules untuk memberikan rekomendasi bahan makanan vegetarian. Aplikasi Rekomendasi Bahan Makanan Vegetarian dan Penentu Kebutuhan Kalori (Verie) merupakan aplikasi yang dikembangkan untuk membantu vegetarian dalam memilih bahan makanan dan menghitung jumlah kalori yang dibutuhkan oleh tubuh perhari yang berjalan di sistem operasi Android pada perangkat mobile yang dikembangkan dengan bahasa pemrogramman Java dengan bantuan Android Studio sebagai IDE dan smartphone dengan sistem operasi Android untuk menguji dan implementasi aplikasi Verie. Apps ini telah diuji dengan menyebarkan kuisioner melalui Google Form, untuk aplikasi Verie diperoleh hasil sebesar 89,3% dari perhitungan skala Likert yang menunjukkan bahwa sistem bernilai sangat baik.
Causality Effect Among ASEAN-5 Stock Markets in COVID-19 Pandemic: VAR Model Approach Fatah, Bintang Izzatul; Jody, Jody; Budiasih, Budiasih
Enthusiastic : International Journal of Applied Statistics and Data Science Volume 3 Issue 1, April 2023
Publisher : Universitas Islam Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20885/enthusiastic.vol3.iss1.art3

Abstract

Financial globalization increase integration degree of capital flow. However, the global shock could impact many countries, either positive and negative. COVID-19 pandemic is one of the shock that affect world including ASEAN-5. This paper apply the Vector Autoregressive (VAR) model to identify the linkage among ASEAN-5 stock markets during the COVID-19 pandemic and it is used because of no spesific theory behind it. The data used in this paper is the weekly return of the composite index of ASEAN-5 stock markets from 11 March 2020 to 29 December 2021. This paper finds that there is a linkage among ASEAN-5 stock markets indicated by decreasing price index consecutive. Therefore, the implication of this paper is that the investors have to switch the investment instrument from stock to other instrument carefully. Once the negative impact begins to taper off, investors could do international stock investment.
Performance Evaluation of Cloud-Init as Deployment Automation, Virtual Machine, and LXC Container on Proxmox VE for AI LLM Deployment Jody, Jody; Riandhito, Febry Aryo; Yusuf, Rika; Saputra, Anggi; Riwurohi, Jan Everhard
Jurnal Sisfokom (Sistem Informasi dan Komputer) Vol. 15 No. 01 (2026): JANUARY
Publisher : ISB Atma Luhur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32736/sisfokom.v15i01.2562

Abstract

As Artificial Intelligence (AI) is used more and more in digital certification systems, it is important to create stable and efficient environments for the use of Large Language Models (LLMs). AI-based chatbots are very helpful for people who are taking online tests at professional certification schools and for people who are giving tests. However, it is still not clear where the best place is to run AI inference workloads because virtualization can use different amounts of resources and cost different amounts. This study aims to identify the optimal deployment environment by assessing Cloud Init, Virtual Machine (VM), and Linux Container (LXC) within the Proxmox Virtual Environment (VE). This environment tested Ollama and FastAPI on the same hardware (4 vCPU, 16 GB RAM, 32 GB SSD, 80 Mbps) and the Phi3:3.8b model. The study also checked the important numbers like CPU and memory usage, disk and network throughput, latency, and response time. The tests showed that LXC had the fastest disk speed (2.45 MB/s) and network speed (3.33 MB/s). VM had the longest response time (15.64 s) and the longest latency (6.89 ms). Cloud Init had mixed results: it made automation easier but less effective. These results show that the best way to use Cloud Init and LXC together for big certification systems is through hybrid orchestration. This is the best way to get a good balance between AI deployment that is flexible and fast. The methodology section provides a clearer description of the experimental process, including benchmark tools (Hey CLI, Sysbench, Prometheus), the number of test repetitions (three sessions per environment), and comparative data analysis methods to ensure result validity. Moreover, the conclusion emphasizes the scientific implications by explaining how Cloud Init’s automation capabilities can be combined with LXC’s performance efficiency to improve AI inference deployments in scalable and institutional environments.