Claim Missing Document
Check
Articles

Found 2 Documents
Search

Loan Origination System Implementation Model and Credit Business Process Value Creation in Improving Business Performance Nasution, Harmansyah; Rahayu, Agus; Gaffar, Vanessa; Sofia, Alfira; Yulianto, Erwin
International Journal of Artificial Intelligence Research Vol 8, No 1.1 (2024)
Publisher : Universitas Dharma Wacana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29099/ijair.v8i1.1.1349

Abstract

The banking industry as a credit provider has changed substantially over the last century, namely that when a bank will lend money with collateral as collateral, the process is carried out in stages involving many bank officers. Currently, almost all operating financial institutions have been digitized, especially the credit application process. More and more customers are choosing digital loans over traditional loans because of the benefits they provide. The aim of this research was to analyze the picture of Business Performance which includes Customer Requirements, Digital Leadership, Loan Origination System Implementation and Credit Business Process Value Creation which influence it. The research method uses quantitative research with descriptive and verification research types. The research population was 64 branch offices which were the analysis units using a saturated sampling technique. The research instrument uses a questionnaire and data analysis techniques to determine the correlative relationship in this research using Partial Least Square. The research results show that Business Performance with the dominant dimension, namely Financial Performance, is influenced by Loan Origination System Implementation with the dominant dimension, namely Document Management and Credit Business Process Value Creation with the dominant dimension, namely Responsiveness. Loan Origination System Implementation and Credit Business Process Value Creation are influenced by Customer Requirements with the dominant dimension, namely Customer Expectation and Digital Leadership with the dominant dimension, namely Customer Focused.
Prediksi Indeks Inovasi Global Indonesia Menggunakan Hybrid Machine Learning Herwanto, Patah; Pratama Putra, Fathurrahman; Rani Apriliani Aditya; Nasution, Harmansyah
JSMA Vol 17 No 2 (2025): JSMA (Jurnal Sains Manajemen dan Akuntansi)
Publisher : LPPM Sekolah Tinggi Ilmu Ekonomi STAN IM

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37151/jsma.v17i2.268

Abstract

Indeks Inovasi Global (Global Innovation Index / GII) merupakan indikator strategis yang digunakan untuk menilai daya saing dan kapasitas inovasi suatu negara. Bagi Indonesia, dinamika nilai GII mencerminkan akumulasi kebijakan, investasi, serta kesiapan sistem inovasi nasional yang berkembang secara bertahap dan bersifat temporal. Oleh karena itu, diperlukan pendekatan analitis yang adaptif untuk memprediksi perubahan GII guna mendukung perencanaan dan pengambilan keputusan strategis berbasis data. Penelitian ini bertujuan untuk mengembangkan dan mengevaluasi model prediksi Indeks Inovasi Global Indonesia menggunakan pendekatan hybrid machine learning berbasis data deret waktu. Metode penelitian dilakukan melalui analisis komparatif beberapa model pembelajaran mesin, yaitu Random Forest, XGBoost, dan Long Short-Term Memory (LSTM), dengan menerapkan validasi temporal untuk mengidentifikasi pola hubungan antarperiode serta menilai kinerja prediktif model. Hasil penelitian menunjukkan bahwa model berbasis machine learning mampu menghasilkan prediksi yang stabil dan konsisten, dengan kinerja GII tahun sebelumnya (lag₁) berperan dominan dalam membentuk nilai GII pada periode berjalan. Temuan ini mengindikasikan bahwa kinerja inovasi nasional lebih dipengaruhi oleh kesinambungan kebijakan dan akumulasi kapasitas jangka menengah dibandingkan intervensi jangka pendek. Implikasi penelitian ini memberikan kontribusi praktis bagi perumus kebijakan dan pengelola sistem inovasi dalam merancang strategi inovasi berkelanjutan yang berorientasi pada penguatan daya saing nasional berbasis analitik prediktif.