Claim Missing Document
Check
Articles

Found 2 Documents
Search

Feature Selection Based on Multi-Filters for Classification of Mammogram Images to Look for Signs of Breast Cancer ‘Uyun, Shofwatul
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 7, No. 3, August 2022
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/kinetik.v7i3.1437

Abstract

The accuracy of classification results on mammogram images has a significant role in breast cancer diagnosis. Therefore, many stages consider finding the model has a high level of accuracy and minimizing the computing load, one of which is the accuracy in using the best feature. This needs to be prioritized considering that mammogram image has many features resulting from the mammogram extraction process. Our research has four stages: feature extraction, feature selection-multi filters, classification, and performance evaluation. Thus, in this research, we propose algorithms that can select the features by utilizing multiple filters simultaneously on the filter model for feature selection of mammogram images based on multi-filters/FSbMF. There are six feature selection algorithms with a filter approach (information gain, rule, relief, correlation, gini index, and chi-square) used in this research. Based on the testing result using 10-fold cross-validation, the features resulting from the FSbMF algorithm have the best performance based on the accuracy, recall, and precision from 72,63%, 70,38%, 75,01% to be 100%. Furthermore, the number of resulting features is the minimum because it results from intersection operation from the feature subsets resulting from the multi-filter.
Fuzzy C-Means Algorithm Modification Based on Distance Measurement for River Water Quality ‘Uyun, Shofwatul; Eka Sulistiyowati; Jati, Tirta Agung
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 9, No. 3, August 2024
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/kinetik.v9i3.1991

Abstract

River water quality could be determined by understanding the capacity of pollutants in a water body. Fuzzy C-Means (FCM) is one of the fuzzy clustering methods for determining river water quality by measuring water quality parameters, that is, dissolved oxygen (DO) and total dissolved solids (TDS). The FCM algorithm is an effective fuzzy clustering algorithm for grouping data but often produces local and inconsistent optimal solutions due to the partition matrix's random initialisation process.  Therefore, this study proposes to modify the FCM algorithm to be precise in the partition matrix initialisation process using several distance concepts. The purpose of the proposed algorithm modification is to get more consistent FCM clustering results and minimise stop iterations. The validation process for the clustering results uses the FCM algorithm, and the FCM modification algorithm uses three parameters, namely the Partition Coefficient Index (PCI), Partition Entropy Index (PEI) and Silhouette Score (SS). The experiments were conducted with three replications and using various distance concepts. The results showed that the number of iterations stopped in the FCM algorithm has different values for PCI, PEI, SS, and stop iterations and objective functions in each trial. On the contrary, the FCM modification algorithm has consistent PCI, PEI, and SS values, and the number of iterations stops with fewer iterations. Therefore, the modified algorithm for initialising the partition matrix can be used in the fuzzy C-means clustering algorithm.