Claim Missing Document
Check
Articles

Found 3 Documents
Search

Object Detection and Monitor System for Building Security Based on Internet of Things (IoT) Using Illumination Invariant Face Recognition Chatisa, Ivan; Syahbana, Yoanda Alim; Wibowo, Agus Urip Ari
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 8, No. 1, February 2023
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/kinetik.v8i1.1622

Abstract

Theft and intrusion are crimes that often occur in neighborhoods when there is opportunity or negligence by owners and security personnel. Many studies have been carried out to improve environmental security by applying cameras as a surveillance medium. However, the camera is not optimal in detecting objects when the lighting conditions are lacking. Therefore, in this study, a monitoring and object detection system was built by applying the Illumination Invariant model. This model is used to improve the appearance of the image from light and shadow reflections. The process of detecting and identifying objects is done by using human facial features (face detection) captured by the camera. The camera used is a Logitec C270 Webcam 720p which is connected via a USB port on the Raspberry Pi 4. The Raspberry Pi 4 processes human face image data and sends the processing results to a MySQL database using the HTTP protocol. Data transmission is done using the Python Flask web framework. The system was successfully run 100% by using black box testing of all functional requirements. Tests on the object detection feature were carried out based on different lighting conditions 15 times by comparing the original image and the results of the Illumination Invariant implementation. Based on the test results obtained object detection accuracy of 86.7%.
Information Gain Feature Selection for Temporal Sentiment Analysis of Pedulilindungi Application Review using Naïve Bayes Classifier Algorithm: Information Gain Feature Selection for Temporal Sentiment Analysis of Pedulilindungi Application Review using Naïve Bayes Classifier Algorithm Helma, Siti Syahidatul; Qudsi, Dini Hidayatul; Chatisa, Ivan
Indonesian Journal of Informatic Research and Software Engineering (IJIRSE) Vol. 5 No. 2 (2025): Indonesian Journal of Informatic Research and Software Engineering (IJIRSE)
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/ijirse.v5i2.2217

Abstract

Through the Instruction of the Minister of Home Affairs of the Republic of Indonesia Number 38 of 2021 concerning the Implementation of Restrictions on Community Activities (PPKM), all communities are required to use the Pedulilindungi application from August 31, 2021, to September 6, 2021, and updated regularly. Users can download and access the Pedulilindungi application through the Google Play Store application market. There, users can directly assess an application by providing reviews that can describe user responses and satisfaction with the application. The Naïve Bayes Classifier (NBC) algorithm is applied to perform modeling in classifying temporal sentiment analysis data. Prior to classification, a feature selection process with information gain is performed. Based on the experimental results, the best evaluation was produced on temporal data dated September 03, 2021, with an accuracy of 91.9% and precision and recall values of 99.9% and 91.9%, respectively.
Pelatihan Bisnis Digital "Digital Marketing Bagi Siswa Sman 1 Tualang" Alimbel, Figo; Chatisa, Ivan
JITER-PM (Jurnal Inovasi Terapan - Pengabdian Masyarakat) Vol. 3 No. 3 (2025): JITER-PM
Publisher : Politeknik Caltex Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Perkembangan pesat teknologi digital telah membawa perubahan mendasar dalam dunia bisnis, khususnya pada aspek pemasaran dan promosi produk. Kegiatan Pengabdian kepada Masyarakat (PkM) yang dilaksanakan pada 21 Mei 2025 ini bertujuan meningkatkan pemahaman dan keterampilan siswa kelas XI SMAN 1 Tualang dalam pemasaran digital dan pembuatan konten visual yang efektif. Sebanyak 40 siswa terpilih mengikuti pelatihan yang menggabungkan materi teori seperti pengantar digital marketing, analisis pasar, dan target konsumen online, serta penerapan digital marketing dan branding produk di media sosial. Selain itu, peserta melakukan praktik langsung desain flyer menggunakan aplikasi Canva, yang dibimbing oleh mahasiswa sebagai asisten instruktur. Pelatihan ini juga dilengkapi dengan sesi diskusi interaktif untuk membahas kendala dan solusi dalam pemasaran digital. Evaluasi pasca pelatihan menunjukkan peningkatan signifikan dalam literasi digital peserta serta kemampuan memanfaatkan media sosial dan platform e-commerce sebagai alat pemasaran. Program ini berperan penting dalam membekali generasi muda dengan keterampilan bisnis digital yang relevan, sekaligus memperkuat sinergi antara institusi pendidikan dan masyarakat untuk menghadapi tantangan ekonomi digital secara berkelanjutan