Claim Missing Document
Check
Articles

Found 1 Documents
Search

Improving the Major Recommendation Systems: Analysis of Hybrid Naïve Bayes-based Collaborative Filtering and Fuzzy Logic Amir Saleh; Sitompul, Boy Arnol; Wijaya Laia, Laksana Febri; Sinaga, Nicholas Ferdinan
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 8, No. 4, November 2023
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/kinetik.v8i4`.1797

Abstract

Major recommendation systems have been widely used to assist prospective students in choosing major that matches their interests and potential. In an effort to improve the performance of the recommendation system, this study proposed to use collaborative filtering techniques with naïve Bayes approach. In addition, this study improved the input parameters using fuzzy logic in determining the recommended majors. The methodology used started from collecting user data, including gender, academic history, interests, and other relevant attributes. The data were used to train the naïve Bayes technique by estimating the probability of feature conformity between users and students in the recommended majors. However, there were problems such as uncertainty and ambiguity in user preferences for input data. The fuzzy logic method aimed to improve the input parameters to more accurately reflect the user preferences. The results of improving the input parameters by using fuzzy logic were then used in the naïve Bayes technique to obtain recommendations for the direction that best suits the user’s preferences. The final stage of this study used evaluation metrics such as precision, recall, and f1-score to measure the performance of the recommendation system in providing accurate recommendations. The use of a hybrid of naïve Bayes and fuzzy logic algorithms obtains an accuracy value of 87.27%, a precision value of 87.33%, a recall value of 87.24%, and an f1-score value of 87.26%. These results are higher than the usual naïve Bayes model applied in major recommendation systems.