Claim Missing Document
Check
Articles

Found 1 Documents
Search

Plasma argon particle interactions in a non-equilibrium state through the Maxwell-Boltzmann kinetic equation Ronald, Azza; Saktioto, Saktioto; Maikul, Kusherbayeva; Bibara, Kushkimbayeva; Samudra, Mohd Rendy; Irawan, Dedi; Abdullah, Hewa Yaseen
Science, Technology and Communication Journal Vol. 5 No. 2 (2025): SINTECHCOM Journal (February 2025)
Publisher : Lembaga Studi Pendidikan and Rekayasa Alam Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59190/stc.v5i2.272

Abstract

Non-thermal Argon plasmas serve multiple functions, particularly in healthcare and industrial applications. Numerous particles of the same species exhibit varying velocities, referred to as a 'population'. The distribution function is a standard method for characterizing a population. The speed and energy distribution functions in the Maxwell-Boltzmann equation are simulated utilizing MATLAB. The density of each species was numerically calculated using the Runge-Kutta method. This research reviews various Argon species, including Ar*, Ar+, Ar(1s5), Ar(1s4), Ar(1s3), Ar(1s2), Ar, and electrons. The parameters utilized include a pressure of 10 mTorr, an Argon temperature about 400 K, and an electron temperature about 30,000 K. The maximum velocity probability density value is observed in the Ar+ species at 6.18 x 107 (m/s)-1, while the minimum value is found in electrons at 1.93 (m/s)-1. The maximum energy probability density value is observed in the Ar+ species at 2.13 x 1029 (Joule)-1, while the minimum value is found in the Ar(1s3) species at 1.40 x 1025 (Joule)-1. The time evolution of the distribution function, independent of the coordinates r, is associated with v, at t = 10-8 s. The velocity distribution function is significantly affected by the density value, while the distribution function is contingent upon the velocity.