Claim Missing Document
Check
Articles

Found 2 Documents
Search

Optimized Vector Control Using Swarm Bipolar Algorithm for Five-Level PWM Inverter-Fed Three-Phase Induction Motor Yaseen, Farazdaq R.; Al-Khazraji, Huthaifa
International Journal of Robotics and Control Systems Vol 5, No 1 (2025)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v5i1.1713

Abstract

Induction motors (IMs) are commonly used in various applications such as robotics and automotive industries. This paper proposes an optimization of two proportional-integral (PI) controllers for a multi-level pulse width modulation (PWM) voltage-fed inverter linked to a three-phase IM. The paper aims to enhance inverter output quality, minimize harmonic distortion, and ensure robust, stable performance. The swarm bipolar algorithm (SBA) is introduced to elaborate the searching of the best settings of the PI controllers to achieve the desired response.  Harmonics lead to increased system losses by creating negative torque components. To address this problem, two modulation algorithms are proposed to generate three-phase voltage with minimum harmonics including space vector PWM (SVPWM) inverter and sinusoidal PWM (SPWM). Simulation results based on MATLAB/Simulink environment for various operation conditions such as sudden loads change and speed changes reveal that the proposed controller enhances the system's performance. Moreover, the five-level SVPWM inverter has a minimum threshold harmonic distortion (THD) compared to the five-level SPWM inverter where the THD is decreased from 40.24% for SPWM method to 13.67% for the SVPWM method.
Application of Terminal Synergetic Control Based Water Strider Optimizer for Magnetic Bearing Systems Kadhim, Mina Q.; Yaseen, Farazdaq R.; Al-Khazraji, Huthaifa; Humaidi, Amjad J.
Journal of Robotics and Control (JRC) Vol. 5 No. 6 (2024)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v5i6.23867

Abstract

Magnetic bearing (Magb) system is a modern and future electromagnetic device that has many advantages and applications. The open-loop dynamics of the Magb system has a nonlinear and unusable characteristic. In the present paper, a novel robust and advance terminal synergetic control (TSC) approach is developed to stabilize position of the Magb system. The controller is design based on the Magb model using the synergetic control associated with the terminal attractor method. The proposed control algorithm has the advantage of developing a control law which is continuous, chattering free, and allows for a more rapid system response. For further enhancement of the controller performance, a population-based algorithm named water strider optimizer (WSO) has been utilized to adjust the tunable coefficients of the control algorithm. In order to approve the ability and the performance of the proposed control approach, a simulation comparison results with the classic synergetic control (CSC) is conducted. Based on the simulation results, the TSC improves the settling time by 50% and the ITAE index by 45.3% as compared to the CSC. In addition, the recovery time under an external disturbance has been improved by 50% as compared to the CSC. These outcomes demonstrate that the proposed control algorithm allows for rapidly in the system response and more robustness.