Claim Missing Document
Check
Articles

Found 2 Documents
Search

Optimizing Low-Voltage Ride-Through in DFIG Wind Turbines via QPQC-Based Predictive Control for Grid Compliance Badawi, Ahmed; Soliman, Mostafa; Elzein, I. M.; Alqaisi, Walid
International Journal of Robotics and Control Systems Vol 5, No 1 (2025)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v5i1.1661

Abstract

This paper introduces a novel Model Predictive Control (MPC)-based strategy to enhance Low-Voltage Ride-Through (LVRT) capability for wind turbines equipped with Doubly Fed Induction Generators (DFIGs). According to modern grid codes, grid-connected wind turbines must remain operational during voltage dips and support the grid by injecting both active and reactive power. However, voltage dips pose significant challenges for (DFIG)-based wind turbines because voltage dips can induce significant large inrush current in the rotor, potentially damaging the rotor converter. Conventional control methods employ proportional-integral (PI) controllers for rotor current regulation and crowbar circuits to protect the converter by diverting high rotor currents away from the converter when they exceed their safe limit. While effective in protecting the hardware, crowbar activation temporarily disconnects the rotor from control, leading to a loss of power injection capabilities and noncompliance with grid codes. To overcome these limitations, this paper proposes an MPC-based rotor current controller formulated as a Quadratically-Constrained Quadratic Programming (QCQP) optimization problem. This controller explicitly incorporates rotor current and voltage constraints while optimizing control performance during grid faults. MATLAB-based simulations for both low- and medium-voltage dips demonstrate the superiority of the proposed approach over conventional PI controllers. The results confirm that the MPC strategy ensures LVRT compliance without the need for a crowbar circuit, maintaining stability and improving performance during a wide-range of fault conditions.
Four DOF Robot Manipulator Control Using Feedback Linearization Based on Sliding Mode Control Alqaisi, Walid Kh.; Soliman, Mostafa; Badawi, Ahmed; Elzein, I. M.; El-Bayeh, Claude Ziad
International Journal of Robotics and Control Systems Vol 5, No 2 (2025)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v5i2.1729

Abstract

This paper investigates the performance of a four-degree-of-freedom (4DOF) robot arm using feedback linearization based on sliding mode control (FLSM). FLSM simplifies complex nonlinear control solutions and mitigates the effects of the highly coupled dynamic behavior of the 4DOF manipulator. The controller takes into account uncertain dynamics and unexpected disturbances such as changes in payload, variations in wind, and gravity effects in different directions. The stability of the proposed controller is achieved using the manipulator model and FLSM without linearizing the model. Stability is analyzed using a Lyapunov function, and MATLAB Simulink is utilized to simulate the real parameters of the Quanser QArm. The results are compared with those obtained using a PID controller.