The main objective of this paper is to review the centralized, decentralized, and hybrid control approaches based on key performance metrics such as efficiency, reliability, and scalability. By improving sustainability, dependability, and efficiency, the combination of artificial intelligence (AI) and the Internet of Things (IoT) in community micro-grids has completely changed energy management. The Internet of Things (IoT) and artificial intelligence (AI) have been used more and more in microgrid control to improve autonomy, dependability, and efficiency. Sensors, smart meters, distributed energy resources (DERs), and energy storage systems are just a few of the microgrid's components that can communicate and monitor in real time thanks to the Internet of Things.AI uses this data to make smart decisions on activities like fault detection, load forecasting, renewable energy prediction, and optimal power dispatch. To optimize power distribution, load balancing, and fault detection in micro-grids, this article compares several control systems that make use of IoT and AI. The study looks at decentralized, hybrid, and centralized control strategies, emphasizing their benefits, drawbacks, and applicability in various operational scenarios. Important performance indicators are assessed, including cost-effectiveness, responsiveness, energy efficiency, and flexibility about renewable energy sources. The results contribute to the development of smart energy systems by shedding light on the best control schemes for enhancing microgrid performance.