Triyadi, Indra
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

News text classification using Long-Term Short Memory (LSTM) algorithm Triyadi, Indra; Prasetiyo, Budi; Nikmah, Tiara Lailatul
Journal of Soft Computing Exploration Vol. 4 No. 2 (2023): June 2023
Publisher : SHM Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52465/joscex.v4i2.136

Abstract

Over the past few years, the classification of texts has become increasingly important. Because knowledge is now available to users through various sources namely electronic media, digital media, print media, and many more. One of them is the development of so much news every day. LSTM is one of the algorithms of deep learning methods that can classify a text. This research proves for the LSTM algorithm on the classification of news text sentences. The data used is the news text from the Kaggle data center set i.e. aggregator news data. The results of the LSTM experiment from 10 epochs obtained with an accuracy value of 93,15% on the classification of texts into four categories, namely entertainment, bussines, science, and health.