Radhika, Moorthy
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Advancing airway management for ventilation optimization in critical healthcare with cloud computing and deep learning Krishnamoorthi, Suresh Kumar; Karthi, Govindharaju; Radhika, Moorthy; Rathinam, Anantha Raman; Raju, Ayalapogu Ratna; Pinjarkar, Latika; Srinivasan, Chelliah
Indonesian Journal of Electrical Engineering and Computer Science Vol 37, No 2: February 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v37.i2.pp1053-1063

Abstract

Improving patient outcomes in critical care settings is significantly connected to effective ventilation control. This research introduces a new method for improving ventilation methods in critical healthcare utilizing a long short-term memory (LSTM) network hosted in the cloud. Ventilators, pulse oximeters, and capnography are just a few examples of medical equipment that input data into the system, which then uploads the data to the cloud for analysis. The LSTM network can learn from data patterns and correlations, drawing on respiratory parameters' time dynamics, to provide real-time suggestions and predictions for ventilation settings. The system aims to improve clinical results and reduce the risk of ventilator-induced lung damage by tailoring ventilation techniques according to each patient's requirements and by forecasting potential issues. Due to remote monitoring technology, medical professionals can quickly analyze their patient's conditions and act accordingly. The system allows for continuous improvement using iterative learning of more data and feedback. With the ability to optimize breathing and enhance patient care in critical healthcare situations, a hopeful development in airway management is needed.
Deep learning for infectious disease surveillance integrating internet of things for rapid response Sumithra, Subramanian; Radhika, Moorthy; Venkatesh, Gandavadi; Lakshmi, Babu Seetha; Jancee, Balraj Victoria; Mohankumar, Nagarajan; Murugan, Subbiah
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 1: February 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i1.pp1175-1186

Abstract

Particularly in the case of emerging infectious diseases and worldwide pandemics, infectious disease monitoring is essential for quick identification and efficient response to epidemics. Improving surveillance systems for quick reaction might be possible with the help of new deep learning and internet of things (IoT) technologies. This paper introduces an infectious disease monitoring architecture based on deep learning coupled with IoT devices to facilitate early diagnosis and proactive intervention measures. This approach uses recurrent neural networks (RNNs) to identify temporal patterns suggestive of infectious disease outbreaks by analyzing sequential data retrieved from IoT devices like smart thermometers and wearable sensors. To identify small changes in health markers and forecast the development of diseases, RNN architectures with long short-term memory (LSTM) networks are used to capture long-range relationships in the data. Spatial analysis permits the integration of geographic data from IoT devices, allowing for the identification of infection hotspots and the tracking of afflicted persons' movements. Quick action steps like focused testing, contact tracing, and medical resource deployment are prompted by abnormalities detected early by real-time monitoring and analysis. Preventing or lessening the severity of infectious disease outbreaks is the goal of the planned monitoring system, which would enhance public health readiness and response capacities.