ABSTRAK Gempa bumi merupakan bencana alam yang kerap melanda Indonesia karena letak geografisnya berada pada batas pertemuan tiga lempeng aktif dunia. Dampak kerusakan yang timbul akibat gempa bumi bergantung pada magnitudo dan kedalamannya. Oleh karena itu, perlu upaya mitigasi bencana dan manajemen risiko bencana melalui pengolahan data untuk mengetahui karakteristik dari data gempa tersebut. Penelitian ini bertujuan untuk clustering data gempa bumi di Indonesia berdasarkan magnitudo dan kedalaman dengan menerapkan algoritma Density-Based Spatial Clustering Algorithm With Noise (DBSCAN) dan Self-Organizing Map (SOM) dengan validasi kebaikan cluster menggunakan koefisien silhouette. Penerapan algoritma DBSCAN dengan nilai Eps dan MinPts optimal sebesar 1,6 dan 12 membentuk dua cluster dan 23 data diidentifikasi sebagai noise, sedangkan menggunakan algoritma SOM dengan learning rate 0,05 dan maksimal epoch 1.000 membentuk dua cluster. Pada analisis ini SOM mampu melakukan clustering yang lebih baik jika dibandingkan dengan DBSCAN karena memberikan nilai koefisien silhouette yang lebih besar, yaitu sebesar 0,717 sedangkan DBSCAN sebesar 0,677. Hasil clustering terbaik memiliki karakteristik yaitu cluster 1 dikategorikan sebagai gempa sedang berkekuatan sedang dan cluster 2 dikategorikan sebagai gempa dangkal berkekuatan sedang. ABSTRACT Earthquakes are natural disasters that occur frequently in Indonesia because of the geographical location at the convergence of three active tectonic plates. The severity of an earthquake's impact is influenced by magnitude and depth. Therefore, disaster mitigation efforts and disaster risk management through data mining are needed to understand the characteristics of earthquakes. This research aims to cluster earthquake data in Indonesia based on magnitude and depth by applying a Density-Based Spatial Clustering Algorithm with Noise (DBSCAN) and Self-Organizing Map (SOM) algorithms and cluster results are evaluated using the silhouette coefficient. Using the DBSCAN algorithm with optimal Eps and MinPts values of 1.6 and 12 formed two clusters and 23 data were identified as noise while using the SOM algorithm with a learning rate of 0.05 and a maximum epoch of 1000 formed two clusters. SOM can perform clustering better than DBSCAN because it provides a larger silhouette coefficient value, which is 0.717 while DBSCAN is 0.677. The clustering results obtained show that cluster 1 is categorized as moderate earthquakes of moderate intensity and cluster 2 is categorized as shallow earthquakes of moderate intensity.