Nagari, Widean
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Timbre Style Transfer for Musical Instruments Acoustic Guitar and Piano using the Generator-Discriminator Model Nagari, Widean; Santoso, Joan; Setiawan, Esther Irawati
Knowledge Engineering and Data Science Vol 7, No 1 (2024)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um018v7i12024p101-116

Abstract

Music style transfer is a technique for creating new music by combining the input song's content and the target song's style to have a sound that humans can enjoy. This research is related to timbre style transfer, a branch of music style transfer that focuses on using the generator-discriminator model. This exciting method has been used in various studies in the music style transfer domain to train a machine learning model to change the sound of instruments in a song with the sound of instruments from other songs. This work focuses on finding the best layer configuration in the generator-discriminator model for the timbre style transfer task. The dataset used for this research is the MAESTRO dataset. The metrics used in the testing phase are Contrastive Loss, Mean Squared Error, and Perceptual Evaluation of Speech Quality. Based on the results of the trials, it was concluded that the best model in this research was the model trained using column vectors from the mel-spectrogram. Some hyperparameters suitable in the training process are a learning rate 0.0005, batch size greater than or equal to 64, and dropout with a value of 0.1. The results of the ablation study show that the best layer configuration consists of 2 Bi-LSTM layers, 1 Attention layer, and 2 Dense layers.
Perbandingan Implementasi Evolutionary Algorithm (EPO, FHO, dan CFA) pada Kasus Travelling Salesman Problem untuk Tempat Pariwisata di Surabaya Chen, Christian; Cahyadi, David; Bevan, Jonathan Arelio; Takhta, Williandy; Lesmana, Ariel; Poernomo, Christopher; Nagari, Widean
Intelligent System and Computation Vol 5 No 1 (2023): INSYST: Journal of Intelligent System and Computation
Publisher : Institut Sains dan Teknologi Terpadu Surabaya (d/h Sekolah Tinggi Teknik Surabaya)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52985/insyst.v5i1.258

Abstract

Traveling merupakan bisnis yang tumbuh pesat di seluruh dunia, dan Indonesia tidak terkecuali. Di Indonesia, khususnya Surabaya, industri pariwisata telah mengalami peningkatan dalam beberapa tahun terakhir, dan diharapkan akan terus tumbuh dalam beberapa tahun ke depan. Dengan peningkatan tersebut, pencarian rute untuk pariwisata harus efisien dan cepat, salah satu solusi yang populer saat ini adalah Evolutionary Algorithms (EA). Algoritma evolusi adalah jenis teknik optimisasi yang meniru proses evolusi alami untuk menemukan solusi terhadap masalah yang kompleks. Salah satu permasalahan yang dapat diselesaikan dengan efektif menggunakan algoritma evolusi adalah Traveling Salesman Problem (TSP). Permasalahan tersebut melibatkan pengunjungan pada beberapa kota dan menemukan rute terpendek untuk kembali ke titik awal. Beberapa algoritma evolusi telah dicadangkan untuk menyelesaikan TSP, seperti algoritma Cuttlefish (CFA), Emperor Penguin Optimizer (EPO) dan Fire Hawk Optimizer (FHO). Algoritma sotong didasarkan pada perilaku sotong liar, EPO terinspirasi oleh perilaku berkerumun dari penguin kaisar, sedangkan FHO menggunakan prinsip propagasi api. Semua algoritma yang telah disebutkan tadi memiliki potensi untuk menyelesaikan TSP dengan keunikannya masing-masing. Kesimpulan kami untuk semua algoritma yang digunakan dalam penelitian ini adalah bahwa EPO berhasil menemukan solusi terbaik diikuti dengan solusi dari CFA dan FHO. Berdasarkan hasil percobaan kami, didapatkan EPO menghasilkan solusi 39.97% lebih baik dari CFA serta 14.75% lebih baik dari FHO secara rata-rata. Serta EPO juga memiliki waktu komputasi rata-rata lebih cepat (69.59% lebih cepat dari CFA dan 178.34% lebih cepat dari FHO).