Daulay, Nur Ainun
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Optimizing Malaria Control: Granular and Cost-Effective Mosquito Habitat Index in Endemic Areas Through Satellite Imagery Daulay, Nur Ainun; Putri, Salwa Rizqina; Wijayanto, Arie Wahyu; Wulansari, Ika Yuni
Knowledge Engineering and Data Science Vol 7, No 1 (2024)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um018v7i12024p40-57

Abstract

Malaria, classified as a tropical disease under the Sustainable Development Goals (SDGs) indicator 3.3, remains a significant global health challenge. In this study, by taking advantage of multiple spectral composite indexes of multisource satellite imagery to capture various geospatial features relevant to the suitability of marsh mosquito habitat, we introduced the Mosquito Habitat Suitability Index (MHSI) to assess potential Anopheles mosquito breeding sites in terms of the vegetation density, water bodies, environment temperature, and humidity in any particular areas. The MHSI integrates the publicly accessible granular level of the normalized difference vegetation index, water index, land surface temperature, and moisture index from cost-effective low and medium-resolution optical satellite data. We focus on West Papua Province, Indonesia, known for diverse ecological conditions and varying malaria prevalence, as a case study area. From the built index, the risk zone map is then formed with the K-Means algorithm. One key finding is the elevated risk in Fakfak Regency, demanding particular attention, as its high-risk area represents 45% of its total. This research aids localized decision-making to combat malaria's unique challenges in West Papua Province which are relevant for implementation in other regions, contributing to SDG-aligned interventions for malaria eradication by 2030.
ESTIMATION OF JAVA GRDP IN REGENCY/CITY LEVEL: SATELLITE IMAGERY AND MACHINE LEARNING APPROACHES Pemayun, Anak Agung Gede Rai Bhaskara Darmawan; Azizi, M Ziko; Daulay, Nur Ainun; Apriliani, Nur Hidayah; Kartiasih, Fitri
JURTEKSI (jurnal Teknologi dan Sistem Informasi) Vol. 10 No. 2 (2024): Maret 2024
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) STMIK Royal Kisaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v10i2.2993

Abstract

Abstract: Gross Regional Domestic Product (GRDP) is one of the most important socio-economic indicators. In order to gain a more comprehensive understanding of the current economic situation and regional differences, estimating GRDP using integration of satellite imagery and official statistics data can provide valuable information. This research estimates the GRDP value in 2022 by using data in 2019 to 2021 related to two aspects, agriculture and non-agriculture. Soil adjusted vegetation index (SAVI), enhanced vegetation index (EVI), and land cover (LC) used as agriculture aspect, while nighttime light (NTL), human settlement index (HSI), land area, and population per regency/city used as non-agriculture aspect. GRDP estimation are produced with machine learning approach using support vector machine (SVM) and random forest (RF) method. Correlation test on each variable shows only land area that does not have a significant correlation with GRDP. RF model then chosen as the best model with RMSE, MSE, MAE, and R2 value of 0.2549; 0.5049; 0.7727; and 0.2543, respectively. The estimated values acquired in several regencies/cities have rather near, some even very close to the official statistics values. Keywords: GRDP; satellite imagery; machine learning; random forest; support vector machine   Abstrak: Produk Domestik Regional Bruto (PDRB) merupakan salah satu indikator sosio-ekonomi yang penting. Penghitungan nilai PDRB dengan pendekatan yang melibatkan kombinasi data citra satelit dan statistik resmi dapat memberikan informasi serta pemahaman yang lebih komprehensif. Penelitian ini melakukan estimasi nilai PDRB pada tahun 2022 menggunakan data tahun 2019 hingga 2021 dengan melibatkan dua aspek, agrikultur dan non-agrikultur. Data soil adjusted vegetation index (SAVI), enhanced vegetation index (EVI), dan tutupan lahan (land cover/LC) digunakan sebagai aspek agrikultur, sementara data citra cahaya malam (NTL), human settlement indeks (HSI), luas wilayah kabupaten/kota, dan jumlah populasi per kabupaten/kota digunakan sebagai aspek non-agrikultur. Estimasi PDRB dihasilkan dengan menggunakan pendekatan machine learning berupa support vector machine (SVM) dan random forest (RF). Pengecekan korelasi antarvariabel menunjukkan bahwa hanya variabel luas wilayah tidak berpengaruh signifikan terhadap nilai PDRB. Model random forest kemudian dipilih sebagai model terbaik dengan nilai evaluasi RMSE, MSE, MAE, dan  berturut-turut sebesar 0.2549, 0.5049, 0.7727, dan 0.2543. Nilai estimasi yang diperoleh di beberapa kabupaten/kota cukup mendekati, bahkan ada yang sangat dekat dengan nilai statistik resmi. Kata kunci: PDRB; citra satelit; machine learning; random forest; support vector machine