Samsat Digital Nasional (SIGNAL) merupakan aplikasi layanan pengesahan Surat Tanda Nomor Kendaraan berbasis mobile. Aplikasi ini membuat perubahan dimana masyarakat yang biasanya harus mendatangi kantor Samsat untuk mengurus pajak kendaraan motornya, sekarang dapat dilakukan dimana saja. Semenjak diluncurkannya aplikasi ini, mucul berbagai tanggapan berupa ulasan dari para pengguna SIGNAL. Ulasan-ulasan ini memiliki informasi yang sangat berguna bagi pihak pemilik aplikasi untuk mengetahui kekurangan dan kelebihan dari aplikasinya. Proses perolehan informasi untuk mengetahui kekurangan dan kelebihan secara manual tentunya memakan waktu lama jika ada puluhan ribu ulasan yang harus dibaca satu persatu. Dengan analisis sentimen, proses tersebut dapat dipersingkat dimana sistem dapat secara otomatis memisahkan ulasan berdasarkan informasi yang terkandung didalamnya dengan cepat dan tepat. Penelitian ini menggunakan algoritma Naïve Bayes Classifier untuk melakukan klasifikasi terhadap ulasan menjadi 3 kelas yaitu sentimen positif, negatif, dan netral. Penelitian dilakukan dengan menggunakan 1792 data ulasan yang diambil dari kolom ulasan aplikasi SIGNAL di Google Play Store, dimana 1433 data dialokasikan sebagai data latih dan 359 data dialokasikan sebagai data uji. Data teks selanjutnya terbentuk numerik dengan menggunakan pembobotan TF-IDF. Pengujian dilakukan dengan menggunakan confusion matrix untuk mengetahui accuracy, precision, dan recall sistem. Berdasarkan hasil pengujian dengan 359 data uji menggunakan confusion matrix didapatkan nilai accuracy dari sistem adalah 91.643% dengan nilai rata-rata precision sebesar 90.41%, dan nilai rata-rata recall sebesar 74.973%.