Abdelali, Zakrani
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Predicting academic performance: toward a model based on machine learning and learner’s intelligences Rafiq, Jamal Eddine; Abdelali, Zakrani; Amraouy, Mohammed; Nouh, Said; Bennane, Abdellah
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 1: February 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i1.pp645-653

Abstract

With the rapid evolution of online learning environments, the ability to predict students' academic performance has become crucial for personalizing and enhancing the educational experience. In this article, we present a predictive model based on machine learning techniques, designed to be integrated into online learning platforms using the competency-based approach. This model leverages features from four key dimensions: demographic, social, emotional, and cognitive, to accurately predict learners' academic performance. We detail the methodology for collecting and processing learning traces, distinguishing between explicit traces, such as demographic data, and implicit traces, which capture learners' interactions and behaviors during their learning process. The analysis of these data not only improves the accuracy of performance predictions but also provides valuable insights into skill acquisition and learners' personal development. The results of this study demonstrate the potential of this model to transform online education by making it more adaptive and focused on individual learners' needs.