Claim Missing Document
Check
Articles

Found 2 Documents
Search

Enhancing power quality in solar-wind grid-connected systems through soft computing techniques Kathirvel, Jayashree; Sreenivasan, Pushpa; Mohammed, Soni; Sethi, Rabinarayan; Syamala, Maganti
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 15, No 4: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v15.i4.pp2493-2500

Abstract

This work intends to improve estimates of solar and wind energy generation through the application of resilient backpropagation control and substantial power evolution strategy (SPES) algorithms. In comparison to particle swarm optimization and genetic algorithms, the main goal is to minimize predicting mistakes. These methods increase grid reliability by lowering total harmonic distortion (THD) and improving power quality when integrated with the IEEE-9 bus standard. In order to evaluate the hybrid system's transient and steady-state reactions, the study also highlights the importance of bolstering operation and control. A revolutionary deep learning-based approach is also suggested for predicting wind and solar hybrid energy. The power grid's efficiency and dependability in handling renewable energy sources have significantly improved, according to the results.
Enhanced integration of renewable energy and smart grid efficiency with data-driven solar forecasting employing PCA and machine learning Kathirvel, Jayashree; Sreenivasan, Pushpa; Vanitha, M.; Mohammed, Soni; Kumar, T. Sathish; Adaikalam, I. Arul Doss
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 16, No 4: December 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v16.i4.pp2645-2654

Abstract

A significant obstacle to preserving grid stability and incorporating renewable energy into smart grids is variations in solar irradiation. To improve solar power management's dependability, this research proposes a short-term solar forecasting framework powered by AI. Multiple machine learning models, such as long short-term memory (LSTM), random forest (RF), gradient boosting (GB), AdaBoost, neural networks (NN), K-Nearest neighbor (KNN), and linear regression (LR), are integrated into the suggested system, which also uses principal component analysis (PCA) for dimensionality reduction. The Abiod Sid Cheikh station in Algeria (2019-2021) provided real-world data for the model's validation. With a two-hour-ahead RMSE of 0.557 kW/m², AdaBoost had the most accuracy, whereas LR had the lowest, at 0.510 kW/m². In addition to increasing computing efficiency, PCA preserved 99.3% of the data volatility. In addition to increasing computing efficiency, PCA preserved 99.3% of the data volatility. These findings highlight the efficiency of hybrid AI models based on PCA for accurate forecasting, which is crucial for smart grid stability.