Claim Missing Document
Check
Articles

Found 5 Documents
Search

Rasch Analysis of the Force and Motion Conceptual Evaluation Test: Validity and Reliability in Measuring Force and Motion Understanding of Students Basri, Nur Akhyar; Salmah, Ummi; Irawan, Ivan Danar Aditya; Indraloka, Ristanti Mulia; Parno, Parno
Jurnal Pembelajaran Fisika Vol 12, No 1 (2024): Jurnal Pembelajaran Fisika
Publisher : Jurnal Pembelajaran Fisika

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Understanding Force and Motion is fundamental in physics education as it forms the basis for more complex concepts and has practical applications in various fields, from engineering to everyday problem-solving. This paper aims at assessing the quality of test questions using the Rasch model to gauge students' understanding of Force and Motion within physics education. The significance of accurately assessing these concepts cannot be overstated, as it ensures that students have a solid foundation for future learning. Adopting a descriptive qualitative approach, the research employed the FMCE (Force and Motion Conceptual Evaluation) test instrument alongside Rasch modelling. The study involved 35 high school students who had covered the Force and Motion curriculum. Analysis with Winstep software (Version 3.65.0) revealed that items 1 and 7 were invalid. The instrument demonstrated commendable reliability, with an item reliability of 0.73. Difficulty level analysis identified five questions as outliers, categorised as either very difficult or very easy. The discrimination analysis confirmed that the instrument effectively differentiated between students who answered correctly and those who did not. Overall, the FMCE exhibited solid validity and high reliability, although some items necessitate revision. The study's limitations, particularly the small sample size, may affect the generalisability of the findings. Despite these limitations, the study provides valuable insights into the assessment of Force and Motion concepts in high school students, though caution is advised when interpreting the results. Future research should consider a larger sample size and diverse educational contexts to enhance the robustness and applicability of the findings.Keywords: Concept understanding, force and motion, high school students, instrument test, Rasch modelDOI: http://dx.doi.org/10.23960/jpf.v12.n1.202404
Analysis of Concept Understanding Test Items on Static Fluid Material Using Rasch Model Irawan, Ivan Danar Aditya; Indraloka, Ristanti Mulia; Basri, Nur Akhyar; Salmah, Ummi; Parno, Parno
Jurnal Pendidikan Fisika Vol 13, No 1 (2025): PENDIDIKAN FISIKA
Publisher : Universitas Muhammadiyah Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26618/jpf.v13i1.15687

Abstract

Conceptual understanding is a vital component in physics education, particularly for static fluid concepts, which are often sources of misconceptions among students. Common misunderstandings include incorrect interpretations of hydrostatic pressure and Pascal's law. This study aims to develop and analyze a conceptual understanding test instrument for static fluid materials using the Rasch Model. A descriptive quantitative research design was employed, involving 75 eleventh-grade students from three high schools in Lumajang and Malang, selected through cluster random sampling. The instrument comprised 16 multiple-choice questions based on eight conceptual indicators and underwent expert validation by two physics teachers. Data were analyzed using the Winstep application to assess validity, reliability, difficulty level, and item discrimination. The results revealed that 12 out of 16 test items met the validity criteria, with an expert validation score of 98.3% categorized as "very valid." Item reliability was rated at 0.96 (very good), while person reliability was 0.47 (very poor), indicating significant variations in student responses. The difficulty levels were balanced: 2 very easy items, two easy items, five moderate items, one difficult item, and two very difficult items. Discrimination analysis grouped respondents into two categories and items into seven distinct groups, showcasing the instrument's effectiveness in identifying variations in student understanding. In conclusion, the developed instrument is valid and reliable for assessing students' conceptual understanding of static fluid topics. The study highlights the need for further validation with larger and more diverse samples to enhance the instrument's applicability across broader educational contexts. 
Analysis of Concept Understanding Test Items on Static Fluid Material Using Rasch Model Irawan, Ivan Danar Aditya; Indraloka, Ristanti Mulia; Basri, Nur Akhyar; Salmah, Ummi; Parno, Parno
Jurnal Pendidikan Fisika Vol. 13 No. 1 (2025): PENDIDIKAN FISIKA
Publisher : Universitas Muhammadiyah Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26618/jpf.v13i1.15687

Abstract

Conceptual understanding is a vital component in physics education, particularly for static fluid concepts, which are often sources of misconceptions among students. Common misunderstandings include incorrect interpretations of hydrostatic pressure and Pascal's law. This study aims to develop and analyze a conceptual understanding test instrument for static fluid materials using the Rasch Model. A descriptive quantitative research design was employed, involving 75 eleventh-grade students from three high schools in Lumajang and Malang, selected through cluster random sampling. The instrument comprised 16 multiple-choice questions based on eight conceptual indicators and underwent expert validation by two physics teachers. Data were analyzed using the Winstep application to assess validity, reliability, difficulty level, and item discrimination. The results revealed that 12 out of 16 test items met the validity criteria, with an expert validation score of 98.3% categorized as "very valid." Item reliability was rated at 0.96 (very good), while person reliability was 0.47 (very poor), indicating significant variations in student responses. The difficulty levels were balanced: 2 very easy items, two easy items, five moderate items, one difficult item, and two very difficult items. Discrimination analysis grouped respondents into two categories and items into seven distinct groups, showcasing the instrument's effectiveness in identifying variations in student understanding. In conclusion, the developed instrument is valid and reliable for assessing students' conceptual understanding of static fluid topics. The study highlights the need for further validation with larger and more diverse samples to enhance the instrument's applicability across broader educational contexts. 
Rasch Analysis of the Force and Motion Conceptual Evaluation Test: Validity and Reliability in Measuring Force and Motion Understanding of Students Basri, Nur Akhyar; Salmah, Ummi; Irawan, Ivan Danar Aditya; Indraloka, Ristanti Mulia; Parno, Parno
Jurnal Pembelajaran Fisika Vol 12, No 1 (2024): Jurnal Pembelajaran Fisika
Publisher : Jurnal Pembelajaran Fisika

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Understanding Force and Motion is fundamental in physics education as it forms the basis for more complex concepts and has practical applications in various fields, from engineering to everyday problem-solving. This paper aims at assessing the quality of test questions using the Rasch model to gauge students' understanding of Force and Motion within physics education. The significance of accurately assessing these concepts cannot be overstated, as it ensures that students have a solid foundation for future learning. Adopting a descriptive qualitative approach, the research employed the FMCE (Force and Motion Conceptual Evaluation) test instrument alongside Rasch modelling. The study involved 35 high school students who had covered the Force and Motion curriculum. Analysis with Winstep software (Version 3.65.0) revealed that items 1 and 7 were invalid. The instrument demonstrated commendable reliability, with an item reliability of 0.73. Difficulty level analysis identified five questions as outliers, categorised as either very difficult or very easy. The discrimination analysis confirmed that the instrument effectively differentiated between students who answered correctly and those who did not. Overall, the FMCE exhibited solid validity and high reliability, although some items necessitate revision. The study's limitations, particularly the small sample size, may affect the generalisability of the findings. Despite these limitations, the study provides valuable insights into the assessment of Force and Motion concepts in high school students, though caution is advised when interpreting the results. Future research should consider a larger sample size and diverse educational contexts to enhance the robustness and applicability of the findings.Keywords: Concept understanding, force and motion, high school students, instrument test, Rasch modelDOI: http://dx.doi.org/10.23960/jpf.v12.n1.202404
Analisis Penguasaan Konsep Siswa SMA pada Materi Fluida Statis melalui Pembelajaran PBL Berbantuan Google Sites Indraloka, Ristanti Mulia; Suwasono, Purbo; Pujiarti, Herlin
Jurnal Penelitian Pendidikan IPA Vol 11 No 3 (2025): March
Publisher : Postgraduate, University of Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29303/jppipa.v11i3.10774

Abstract

The purpose of this study was to analyze the effectiveness of PBL assisted by Google Sites in improving students' mastery of static fluid concepts. The research used mixed method research, Sequential Explanatory design. The research subjects were students of SMAN 01 Candipuro class XI MIPA, consisting of 35 experimental class students and 35 control class students. Quantitative data obtained from pretest and posttest with multiple choice instrument questions. The results of the T test on the pretest (0.931) showed no difference in initial ability between classes, while the Mann-Whitney test on the posttest (0.000) showed a significant difference between the two classes. The effectiveness of PBL aided by Google Sites is shown by the N-Gain of the experimental class (0.77, high category) which is greater than the N-gain of the control class (0.39, medium category). Qualitative data obtained from interviews revealed that the features of Google Sites, the presentation of contextual problems through videos, images, articles, and the investigation stage helped students build their own concepts and overcome misconceptions. This finding shows that PBL assisted by Google Sites is effective in improving students' mastery of the concept of static fluid.